




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、12.2 三角形全等的判定,第2课时 三角形的全等的判定(二)(SAS),尺规作图,探究边角边的判定方法,问题1先任意画出一个ABC,再画一个 ABC,使AB=AB,A=A,CA= CA(即两边和它们的夹角分别相等)把画好的 ABC剪下来,放到ABC 上,它们全等吗?,作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA, OB 于点C、D;,已知:AOB求作: AOB=AOB,用尺规作一个角等于已知角,复习回顾,应用所学,O,D,B,C,A,作法: (2)画一条射线OA,以点O为圆心,OC 长为半 径画弧,交OA于点C;,已知:AOB求作: AOB=AOB,用尺规作一个角等于已知角,应
2、用所学,例题解析,O,C,A,O,D,B,C,A,作法: (3)以点C为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D;,已知:AOB求作: AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,D,C,A,O,D,B,C,A,作法: (4)过点D画射线OB,则AOB=AOB,已知:AOB求作: AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,D,B,C,A,O,D,B,C,A,作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA, OB 于点C、D; (2)画一条射线OA,以点O为圆心,OC 长为半 径画弧,交OA于点C; (3)以点C为圆心,C
3、D 长为半径画弧,与第2 步中 所画的弧交于点D; (4)过点D画射线OB,则AOB=AOB,已知:AOB求作: AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,尺规作图,探究边角边的判定方法,现象:两个三角形放在一起 能完全重合 说明:这两个三角形全等,画法: (1) 画DAE =A; (2)在射线AD上截取 AB=AB,在射线 AE上截取AC=AC; (3)连接BC,几何语言: 在ABC 和 AB C中,,ABC AB C(SAS),尺规作图,探究边角边的判定方法,归纳概括“SAS”判定方法: 两边和它们的夹角分别相等的两个三角形全等(可 简写成“边角边”或“SAS ”),课
4、堂练习,下列图形中有没有全等三角形,并说明全等的理 由,课堂练习,图甲与图丙全等,依据就是“SAS”,而图乙中 30的角不是已知两边的夹角,所以不与另外两个三角 形全等,利用今天所学“边角边”知识,带黑色的那块因 为它完整地保留了两边及其夹角, 一个三角形两条边的长度和夹角的 大小确定了,这个三角形的形状、 大小就确定下来了,应用“SAS”判定方法,解决简单实际问题,问题2某同学不小心把一块三角形的玻璃从两个 顶点处打碎成两块(如图),现要到玻璃店去配一块完 全一样的玻璃请问如果只准带一块碎片,应该带哪一 块去,能试着说明理由吗?,例题讲解,学会运用,例如图,有一池塘,要测池塘两端A、B的距离
5、, 可先在平地上取一个不经过池塘可以直接到达点A 和B 的点C,连接AC并延长至D,使CD =CA,连接BC 并延 长至E,使CE =CB,连接ED,那么量出DE的长就是A, B的距离为什么?,例题讲解,学会运用,证明:在ABC 和DEC 中,,ABC DEC(SAS) AB =DE (全等三角形的对应边相等),如图,在ABC 和ABD 中, AB =AB,AC = AD,B =B, 但ABC 和ABD 不全等,探索“SSA”能否识别两三角形全等,问题3 两边一角分别相等包括“两边夹角”和 “两边及其中一边的对角”分别相等两种情况,前面已 探索出“SAS”判定三角形全等的方法,那么由“SSA” 的条件能判定两个三角形全等吗?,画ABC 和DEF,使B =E =30, AB =DE =5 cm ,AC =DF =3 cm 观察所得的两个三角形是否全 等?,两边和其中一边的对角这三个条件无法唯一确定三 角形的形状,所以不能保证两个三角形全等因此, ABC 和DEF 不一定全等,探索“SSA”能否识别两三角形全等,(1)本节课学习了哪些主
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 热电联供系统优化设计方法-全面剖析
- 扁桃体癌多学科综合治疗-全面剖析
- 智能化建筑节能管理-全面剖析
- 植物油油脚资源化利用-全面剖析
- AI写作辅助工具的前景-全面剖析
- 便道填筑施工方案
- 工业自动化系统集成-全面剖析
- 互联网时代的文学场域重构-全面剖析
- 疫情下文化遗产保护挑战-全面剖析
- 小学三年级数学两位数乘两位数笔算水平考核例题
- 19S406建筑排水管道安装-塑料管道
- KA-T 20.1-2024 非煤矿山建设项目安全设施设计编写提纲 第1部分:金属非金属地下矿山建设项目安全设施设计编写提纲
- 绿色生活实践
- (2024年)硫化氢安全培训课件
- 《聚焦超声治疗》课件
- 2023-2024学年高一下学期第一次月考(湘教版2019)地理试题(解析版)
- 妇科炎症介绍演示培训课件
- 如康家园管理制度
- 蓄水池工程施工工艺与技术措施
- 2022年4月自考00149国际贸易理论与实务试题及答案含评分标准
- 大数据驱动的药物研发
评论
0/150
提交评论