




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、视觉微积分:Mamikon方法2011.6.10,1959年Mamikon发现了一种求面积的方法,很巧妙的方法。不需要积分。有些曲线所围成的面积用这种方法很方便计算,尤其是当曲线的切线的长度容易确定的时,这种方法特别方便。,Mamikon Mnatsakanian,根据Mamikon的方法,图中环形区域的面积等于右上方圆的面积。 理由:它们都是红色的直线段旋转360度扫出的图形,所以面积相等。 看了这个动画,你对这种方法就有直观的了解: /mamikon/CircIkon.html,用Mamikon的方法,曳物线(Tractix)(见下图)(动
2、画点 这里 )与其渐近线之间的面积可以轻易得出。解释如下:,假设切线(拉绳)的长度是LL,则小孩在曳物的整个过程中,切线转动了90度,所以根据Mamikon的结论,曳物线与其渐近线之间的面积等于半径为 L 的1/4圆的面积,即 (见下图)。如果用定积分来求这个面积,计算是比较复杂的。,去看看动画:/mamikon/TraxIkon.html,这个方法在以下主页可以看到: 视觉微积分主页: /mamikon/calculus.html,微积分教材的作者Apostol对这种方法的介绍: AVISUA
3、L Approach to CALCULUS problems A talk by TOM M. APOSTOL /mamikon/VisualCalc.html,下面, 我们用数学软件Maple绘制一些图形。,环形域:,L: 切线长,with(plots): a:=2:b:=2:L:=3: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=0.2*Pi,thickness=5,color=red): quxi
4、an2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=5,color=blue): qumian:=plot3d(x(t)-s*D(x)(t)/R(t),y(t)-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,grid=30,2): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=3): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=3): z_axis:=plot3d(0,0,u,u
5、=-2.3,v=0.0.01,thickness=3): xyz:=display(x_axis,y_axis,z_axis,thickness=3): display(qumian,quxian1,quxian2,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,切线长,with(plots): a:=2:b:=1:L:=3: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecu
6、rve(x(t),y(t),0,t=0.2*Pi,thickness=3,color=red): quxian2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): qumian:=plot3d(x(t)-s*D(x)(t)/R(t),y(t)-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,grid=30,2): qumian2:=plot3d(-s*D(x)(t)/R(t),-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,grid=3
7、0,2): quxian3:=spacecurve(-L*D(x)(t)/R(t),-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=3): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=3): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=3): xyz:=display(x_axis,y_axis,z_axis,thickness=3): displ
8、ay(qumian,quxian1,quxian2,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained); display(qumian2,quxian3,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,with(plots): a:=2:b:=1:L:=3: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(
9、t)2): quxian1:=spacecurve(x(t),y(t),0,t=0.2*Pi,thickness=3,color=red): quxian2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): qumian:=plot3d(x(t)-s*D(x)(t)/R(t),y(t)-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,grid=30,2): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=3)
10、: y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=3): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=3): xyz:=display(x_axis,y_axis,z_axis,thickness=3): display(qumian,quxian1,quxian2,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,切线长,with(plots): a:=2:b:=1:L:=3:
11、x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=0.2*Pi,thickness=3,color=red): quxian2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): qumian:=plot3d(x(t)-s*D(x)(t)/R(t),y(t)-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,grid=30,
12、2): qumian2:=plot3d(-s*D(x)(t)/R(t),-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,grid=30,2): quxian3:=spacecurve(-L*D(x)(t)/R(t),-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=3): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=3): z_axis:=plot3d(0,0,u,u=-2.3,v
13、=0.0.01,thickness=3): xyz:=display(x_axis,y_axis,z_axis,thickness=3): display(qumian,quxian1,quxian2,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained); display(qumian2,quxian3,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,with(pl
14、ots): a:=2:b:=1:L:=3: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=0.2*Pi,thickness=3,color=red): quxian2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): qumian:=plot3d(x(t)-s*D(x)(t)/R(t),y(t)-s*D(y)(t)/R(t),0,t
15、=0.2*Pi,s=0.L,grid=30,2): qumian2:=plot3d(-s*D(x)(t)/R(t),-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,grid=30,2): quxian3:=spacecurve(-L*D(x)(t)/R(t),-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=3): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=3): z_axis:
16、=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=3): xyz:=display(x_axis,y_axis,z_axis,thickness=3): display(qumian,quxian1,quxian2,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained); display(qumian2,quxian3,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling
17、=constrained);,with(plots): a:=2:b:=2:L:=5: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=0.2*Pi,thickness=4,color=red): quxian2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): qumian:=plot3d(x(t)-s*D(x)(t)/R(t),y
18、(t)-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,style=patchnogrid,color=green): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=3): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=3): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=3): xyz:=display(x_axis,y_axis,z_axis,thickness=3): K:=20: for i from 1 to K do ti:
19、=i*2*Pi/K: linei:=spacecurve(x(ti)-s*D(x)(ti)/R(ti),y(ti)-s*D(y)(ti)/R(ti),0,s=0.L,color=brown,thickness=2) od: line:=display(seq(linei,i=1.K): display(qumian,quxian1,quxian2,line,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,两个图形面积相等,with(plots): a:=2:b:=3:L:=5
20、: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=0.2*Pi,thickness=4,color=red): quxian2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): qumian:=plot3d(x(t)-s*D(x)(t)/R(t),y(t)-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,style=
21、patchnogrid,color=green): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=3): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=3): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=3): xyz:=display(x_axis,y_axis,z_axis,thickness=3): K:=20: for i from 1 to K do ti:=i*2*Pi/K: linei:=spacecurve(x(ti)-s*D(x)(
22、ti)/R(ti),y(ti)-s*D(y)(ti)/R(ti),0,s=0.L,color=brown,thickness=2) od: line:=display(seq(linei,i=1.K): display(qumian,quxian1,quxian2,line,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,with(plots): a:=2:b:=3:L:=5: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D
23、(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=0.2*Pi,thickness=4,color=red): quxian2:=spacecurve(-L*D(x)(t)/R(t),-L*D(y)(t)/R(t),0,t=0.2*Pi,thickness=3,color=blue): qumian:=plot3d(-s*D(x)(t)/R(t),-s*D(y)(t)/R(t),0,t=0.2*Pi,s=0.L,style=patchnogrid,color=green): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thic
24、kness=3): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=3): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=3): xyz:=display(x_axis,y_axis,z_axis,thickness=3): K:=20: for i from 1 to K do ti:=i*2*Pi/K: linei:=spacecurve(-s*D(x)(ti)/R(ti),-s*D(y)(ti)/R(ti),0,s=0.L,color=brown,thickness=2) od: line:=d
25、isplay(seq(linei,i=1.K): display(qumian,quxian2,line,orientation=0,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,两个图形面积相等,with(plots): a:=3:b:=3:L:=5:A:=0:B:=3.5: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=A.B,thickness=4,color=
26、red): quxian2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=A.B,thickness=3,color=blue): qumian:=plot3d(x(t)-s*D(x)(t)/R(t),y(t)-s*D(y)(t)/R(t),0,t=A.B,s=0.L,style=patchnogrid,color=green): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=1): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=1)
27、: z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=1): xyz:=display(x_axis,y_axis,z_axis,thickness=3): K:=20: for i from 1 to K do ti:=i*(B-A)/K: linei:=spacecurve(x(ti)-s*D(x)(ti)/R(ti),y(ti)-s*D(y)(ti)/R(ti),0,s=0.L,color=brown,thickness=2) od: line:=display(seq(linei,i=1.K): display(qumian,quxian1,
28、quxian2,line,xyz,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,with(plots): a:=3:b:=3:L:=5:A:=0:B:=3.5: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=A.B,thickness=4,color=red): quxian2:=spacecurve(-L*D(x)(t)/R(t),-
29、L*D(y)(t)/R(t),0,t=A.B,thickness=3,color=blue): qumian:=plot3d(-s*D(x)(t)/R(t),-s*D(y)(t)/R(t),0,t=A.B,s=0.L,style=patchnogrid,color=green): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=1): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=1): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=1): xyz:=d
30、isplay(x_axis,y_axis,z_axis,thickness=3): K:=20: for i from 1 to K do ti:=i*(B-A)/K: linei:=spacecurve(-s*D(x)(ti)/R(ti),-s*D(y)(ti)/R(ti),0,s=0.L,color=brown,thickness=2) od: line:=display(seq(linei,i=1.K): display(qumian,quxian2,line,xyz,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light
31、2,scaling=constrained);,两个图形面积相等,with(plots): a:=3:b:=3:L:=5:A:=0:B:=5.5: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=A.B,thickness=4,color=red): quxian2:=spacecurve(x(t)-L*D(x)(t)/R(t),y(t)-L*D(y)(t)/R(t),0,t=A.B,thickness=3,color=blue): qumian:=plot
32、3d(x(t)-s*D(x)(t)/R(t),y(t)-s*D(y)(t)/R(t),0,t=A.B,s=0.L,style=patchnogrid,color=green): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=1): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=1): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=1): xyz:=display(x_axis,y_axis,z_axis,thickness=3): K:=20: for
33、 i from 1 to K do ti:=i*(B-A)/K: linei:=spacecurve(x(ti)-s*D(x)(ti)/R(ti),y(ti)-s*D(y)(ti)/R(ti),0,s=0.L,color=brown,thickness=2) od: line:=display(seq(linei,i=1.K): display(qumian,quxian1,quxian2,line,xyz,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,with(plots
34、): a:=3:b:=3:L:=5:A:=0:B:=5.5: x:=t-a*cos(t):y:=t-b*sin(t): R:=t-sqrt(D(x)(t)2+D(y)(t)2): quxian1:=spacecurve(x(t),y(t),0,t=A.B,thickness=4,color=red): quxian2:=spacecurve(-L*D(x)(t)/R(t),-L*D(y)(t)/R(t),0,t=A.B,thickness=3,color=blue): qumian:=plot3d(-s*D(x)(t)/R(t),-s*D(y)(t)/R(t),0,t=A.B,s=0.L,st
35、yle=patchnogrid,color=green): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,thickness=1): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=1): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=1): xyz:=display(x_axis,y_axis,z_axis,thickness=3): K:=20: for i from 1 to K do ti:=i*(B-A)/K: linei:=spacecurve(-s*D(x)(
36、ti)/R(ti),-s*D(y)(ti)/R(ti),0,s=0.L,color=brown,thickness=2) od: line:=display(seq(linei,i=1.K): display(qumian,quxian2,line,orientation=-90,0,tickmarks=4,4,4,axes=none,lightmodel=light2,scaling=constrained);,两个图形面积相等,with(plots): L:=5:A:=-1.732:B:=1.732: x:=t-t2:y:=t-t3-3*t: R:=t-sqrt(D(x)(t)2+D(y)
37、(t)2): quxian1:=spacecurve(x(t),y(t),0,t=A.B,thickness=4,color=red): quxian2:=spacecurve(x(t)+L*D(x)(t)/R(t),y(t)+L*D(y)(t)/R(t),0,t=A.B,thickness=3,color=blue): qumian:=plot3d(x(t)+s*D(x)(t)/R(t),y(t)+s*D(y)(t)/R(t),0,t=A.B,s=0.L,style=patchnogrid,color=green): x_axis:=plot3d(u,0,0,u=-3.3,v=0.0.01,
38、thickness=1): y_axis:=plot3d(0,u,0,u=-3.3,v=0.0.01,thickness=1): z_axis:=plot3d(0,0,u,u=-2.3,v=0.0.01,thickness=1): xyz:=display(x_axis,y_axis,z_axis,thickness=3): K:=20: for i from 1 to K do ti:=A+i*(B-A)/K: linei:=spacecurve(x(ti)+s*D(x)(ti)/R(ti),y(ti)+s*D(y)(ti)/R(ti),0,s=0.L,color=brown, thickness=2) od: line:=display(seq(linei,i=1.K): display(qumian,quxian1,quxian2,line,xyz,orientation=-90,0,tickmarks=4,4,4,axes=none,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年6月校园无土栽培区营养液循环维护合同
- 2025上海市房屋建筑修缮及装修工程施工合同(版)甲种本
- 2024年2月盲文标识凸点高度精确度验收规范
- 二零二五家装纯设计合同
- 物业转供电协议合同书模板二零二五年
- 二零二五版钢结构厂房购销合同
- 书柜书桌定制合同标准文本
- 二零二五白瑾的离婚协议书
- 国际贸易独家代理协议
- 2025【长沙兼职劳动合同书】合同样本
- 决策与协调机制制度
- 劳动合同到期不续签证明
- 朋友是你点燃了我作文600字
- 2024年人教版小学五年级数学(下册)期中试卷附答案
- 学生作业打卡模板
- 2024年4月自考00150金融理论与实务试题及答案
- DZ∕T 0222-2006 地质灾害防治工程监理规范(正式版)
- DZ∕T 0212.3-2020 矿产地质勘查规范 盐类 第3部分:古代固体盐类(正式版)
- 《雷雨》《窦娥冤》《祝福》联读课件 统编版高中语文必修下册
- 命案防控知识讲座
- 人工智能在舆情监测与危机管理中的应用
评论
0/150
提交评论