




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1,第四章 Dynamic Programming技术,邹权(博士) 计算机科学系,2,4.1 Introduction,F(n) =,1if n = 0 or 1 F(n-1) + F(n-2)if n 1,Pseudo code for the recursive algorithm: F(n) 1if n=0 or n=1 then return 1 2elsereturn F(n-1) + F(n-2),Fibonacci number F(n),3,The execution of F(7),F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F
2、1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,4,The execution of F(7),Computation of F(2) is repeated 8 times!,F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,5,The execution of F(7),Computation
3、 of F(3) is also repeated 5 times!,F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,6,The execution of F(7),Many computations are repeated! How to avoid this?,F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,F
4、0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,7,Idea for improvement,Memorization Store F1(i) somewhere after we have computed its value Afterward, we dont need to re-compute F1(i); we can retrieve its value from our memory.,F1(n) 1 if vn 0 then 2 vn F1(n-1)+F1(n-2) 3 return vn,Main() 1 v0
5、 = v1 1 2 for i 2 to n do 3 vi = -1 4 output F1(n),8,Look at the execution of F(7),v0 v1 v2 v3 v4 v5 v6 v7,F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,F(i)=Fi,9,Look at the execution of F(7),v0 v1 v2 v3 v4 v5 v6 v7,F7,F6,
6、F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,10,Look at the execution of F(7),v0 v1 v2 v3 v4 v5 v6 v7,F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,11,
7、Look at the execution of F(7),v0 v1 v2 v3 v4 v5 v6 v7,F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,12,Look at the execution of F(7),v0 v1 v2 v3 v4 v5 v6 v7,F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,
8、F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,13,Look at the execution of F(7),v0 v1 v2 v3 v4 v5 v6 v7,F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F0,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,14,F1,F0,Look at the execution of F(7),v0 v1 v2 v3 v4 v5 v6 v7,
9、F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,15,F1,F0,F2,F1,F0,F1,Look at the execution of F(7),F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,v0 v1 v2 v3 v4 v5 v6 v7,16,
10、F1,F0,F2,F1,F0,F1,Look at the execution of F(7),F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F2,F1,F0,F2,F1,F0,F4,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,v0 v1 v2 v3 v4 v5 v6 v7,17,F1,F0,F2,F1,F0,F2,F1,F0,F2,F1,F0,F3,F1,F1,Look at the execution of F(7),F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F4,F4,F3,F3,
11、F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,v0 v1 v2 v3 v4 v5 v6 v7,18,F1,F0,F2,F1,F0,F2,F1,F0,F2,F1,F0,F3,F1,F1,Look at the execution of F(7),F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F4,F4,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,v0 v1 v2 v3 v4 v5 v6 v7,19,F1,F0,F2,F1,F0,F2,F1,F0,F2,F1,F0,F3,F3,F3,F2,F1,F0,F2,F1,F0,
12、F2,F1,F0,F1,F1,F1,F1,Look at the execution of F(7),F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F1,F4,F4,v0 v1 v2 v3 v4 v5 v6 v7,20,F1,F2,F1,F0,F2,F1,F0,F2,F1,F0,F4,F3,F3,F3,F2,F1,F0,F2,F1,F0,F2,F1,F0,F1,F1,F1,F1,Look at the execution of F(7),F7,F6,F5,F5,F4,F3,F3,F2,F1,F0,F2,F0,F1,F4,v0 v1 v2 v3 v4 v5 v6 v7,21,
13、This new implementation saves lots of overhead.,Can we do even better?,Observation The 2nd version still make many function calls, and each wastes times in parameters passing, dynamic linking, . In general, to compute F(i), we need F(i-1) start filling the solution of the smallest problem. This ensu
14、res that when we solve a particular sub-problem, the solutions of all the smaller sub-problems that it depends are available.,For historical reasons, we call such methodology Dynamic Programming. In the late 40s (when computers were rare),programming refers to the tabular method.,24,Dynamic programm
15、ing VS Divide-and-conquer,Divide-and-conquer method 1. Subproblem is independent. 2. Subproblem is solved repeatedly. Dynamic programming (DP) 1. Subproblem is not independent. 2. Subproblem is just solved once. Common: Problem is partitioned into one or more subproblem, then the solution of subprob
16、lem is combined. DP reduces computation by Solving subproblems in a bottom-up fashion. Storing solution to a subproblem the first time it is solved. Looking up the solution when subproblem is met again.,25,26,4.2 Assembly-line scheduling,End,Sij :The jth station on line i ( i=1 or 2) . aij :The asse
17、mbly time required at station Sij. ei :Entry time. xi: Exit time.,27,One Solution,Brute force Enumerate all possibilities of selecting stations Compute how long it takes in each case and choose the best one Problem: There are 2n possible ways to choose stations Infeasible when n is large,28,fij = th
18、e fastest time to get from the starting point through station Sij Let f * denote fastest time to get a chassis all the way through the factory. j = 1 (getting through station 1) f11 = e1 + a11 f21 = e2 + a21,f * = min( f1n+x1 , f2n+x2 ),e1,e2,a11,a12,a13,a21,a22,a23,a1n-1,a1n,a2n-1,a2n,x1,x2,t1n-1,t
19、2n-1,Begin,Line 1,Line 2,t11,t21,t12,t22,29,2. A Recursive Solution (cont.),Compute fij for j = 2, 3, ,n, and i = 1, 2 Fastest way through S1j is either: fastest way through S1j-1then directly through S1j, or f1j = f1j - 1 + a1j fastest way through S2j-1, transfer from line 2 to line 1, then through
20、 S1j f1j = f2j -1 + t2j-1 + a1j f1j = min(f1j - 1 + a1j, f2j -1 + t2j-1 + a1j),a1j,a1j-1,a2j-1,t2j-1,S1j,S1j-1,S2j-1,30,The recursive equation For example, n=5: Solving top-down would result in exponential running time,f1j,f2j,1,2,3,4,5,f15,f25,f14,f24,f13,f23,2 times,4 times,f12,f22,f11,f21,31,3. C
21、omputing the Optimal Solution,For j 2, each value fij depends only on the values of f1j 1 and f2j - 1 Compute the values of fij in increasing order of j Bottom-up approach First find optimal solutions to subproblems Find an optimal solution to the problem from the subproblems,f1j,f2j,1,2,3,4,5,32,Ad
22、ditional Information,To construct the optimal solution we need the sequence of what line has been used at each station: lij the line number (1, 2) whose station (j - 1) has been used to get in fastest time through Sij, j = 2, 3, , n l* - the line whose station n is used to get in the fastest way thr
23、ough the entire factory,l1j,l2j,2,3,4,5,33,Step 3: Computing the fastest way,DPFastestWay(a, t, e, x, n) 1 f11 e1 + a11; f21 e2 + a21 2 for j 2 to n do 3 if f1j - 1 + a1j f2 j - 1 + t2j-1 + a1j then 4 f1j f1j - 1 + a1j 5 l1j 1 6 else f1j f2 j - 1 + t2j-1 + a1j 7 l1j 2 8 if f2j - 1 + a2j f1j - 1 + t1
24、j-1 + a2j then 9 f2j f2j - 1 + a2j 10 l2j 2 11 else f2 j f1j - 1 + t1j-1+ a2j then 12 l2j 1 13 if f1n + x1f2n + x2 then 14 f* f1n + x1 15 l* 1 16 else f* f2n + x2 17 l* 2,Running time: (n),34,For example,Begin,End,1,2,3,4,5,6,j,f1j,f2j,f *=38,9,12,18,16,20,22,24,25,32,30,35,37,2,3,4,5,6,j,l1j,l2j,l
25、*=1,2,1,1,1,1,1,2,2,2,2,35,4. Construct an Optimal Solution,PrintStations(l, n) 1 i l* 2 print “line ” i “, station ” n 3 for j n downto 2 do 4 i lij 5 print “line ” i “, station ” j - 1,line 1, station 6,line 2, station 5,line 2, station 4,line 1, station 3,line 2, station 2,2,3,4,5,6,j,l1j,l2j,l *
26、=1,2,1,1,1,1,1,2,2,2,2,line 1, station 1,36,2,4,3,2,7,9,4,4,8,8,5,4,7,5,2,3,3,4,2,1,2,1,3,6,1,2,Begin,End,The fastest assembly way,f *=38,37,4.3 Matrix-chain multiplication,Problem: Given a chain A1, A2, . . . , An of n matrices, where for i = 1, 2, . . . , n , matrix Ai has dimension pi-1 pi, fully
27、 parenthesize the product A1 A2.An in a way that minimizes the number of scalar multiplications. A1 A2 Ai Ai+1 An p0 p1 p1 p2 pi-1 pi pi pi+1 pn-1 pn A product of matrices is fully parenthesized if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by
28、parentheses.,38,For example, if the chain of matrices is , the product A1 A2 A3 A4 can be fully parenthesized in five distinct ways: (A1 (A2 (A3 A4) , (A1 (A2 A3) A4) , (A1 A2) (A3 A4) , (A1 (A2 A3) A4) , (A1 A2) A3) A4).,39,MatrixMultiply(A,B) 1 if mp then 2 print “Two matrices cannot multiply 3 el
29、se for i1 to n 4 for j1 to q do 5 Ci, j0 6 for k 1 to m do 7 Ci ,jCi ,j + Ai, k Bk, j 8 return C,Running time: (nmq),40,Consider the problem of a chain A1, A2, A3 of three matrices. Suppose that the dimensions of the matrices are 10100, 1005, and 550, respectively. 1. (A1A2) A3): A1A2 = 101005 = 5,0
30、00 (105) (A1 A2) A3) = 10550 = 2,500 Total: 7,500 scalar multiplications 2. (A1 (A2A3): A2A3 = 100550 = 25,000 (10050) (A1 (A2 A3) = 1010050 = 50,000 Total: 75,000 scalar multiplications one order of magnitude difference!,41,1. The structure of an optimal parenthesization,Notation: Aij = Ai Ai+1 Aj,
31、 i j For i j: Aij = Ai Ai+1 Aj = Ai Ai+1 Ak Ak+1 Aj = Aik Ak+1j,42,2. A recursive solution,Subproblem: determine the minimum cost of parenthesizing Aij = Ai Ai+1 Aj for 1 i j n Let mi, j = the minimum number of multiplications needed to compute Aij Full problem (A1.n): m1, n,43,2. A Recursive Soluti
32、on (cont.),Consider the subproblem of parenthesizing Aij = Ai Ai+1 Aj for 1 i j n = Aik Ak+1j for i k j mi, j = the minimum number of multiplications needed to compute the product Aij mi, j = mi, k + mk+1, j + pi-1pkpj,min # of multiplications to compute Aik,# of multiplications to compute AikAkj,mi
33、n # of multiplications to compute Ak+1j,44,2. A Recursive Solution (cont.),mi, j = mi, k + mk+1, j + pi-1pk pj We do not know the value of k There are ji possible values for k: k = i, i+1, , j-1 Minimizing the cost of parenthesizing the product Ai Ai+1 Aj becomes:,45,3. Computing the Optimal Costs,H
34、ow many subproblems do we have? Parenthesize Aij for 1 i j n One problem for each choice of i and j A recurrent algorithm may encounter each subproblem many times in different branches of the recursion overlapping subproblems Compute a solution using a tabular bottom-up approach, (n2),46,Reconstruct
35、ing the Optimal Solution,Additional information to maintain: si, j = a value of k at which we can split the product Ai Ai+1 Aj in order to obtain an optimal parenthesization,47,3. Computing the Optimal Costs (cont.),How do we fill in the tables m1.n, 1.n and s1.n, 1.n ? Determine which entries of th
36、e table are used in computing mi, j mi, j = cost of computing a product of j i 1 matrices mi, j depends only on costs for products of fewer than j i 1 matrices Aij = Aik Ak+1j Fill in m such that it corresponds to solving problems of increasing length,48,3. Computing the Optimal Costs (cont.),Length
37、 = 0: i = j, i = 1, 2, , n Length = 1: j = i + 1, i = 1, 2, , n-1,1,1,2,3,n,2,3,n,Compute rows from bottom to top and from left to right In a similar matrix s we keep the optimal values of k,i,j,49,MatrixChainOrder(p),DPMatrixChain(p) 1 for i 1 to n do 2 mi, i 0 3 for c 2 to n do 4 for i 1 to n c +
38、1 do 5 j i +c 1 6 mi, j 7 for k i to j 1 do 8 q mi, k + mk+1, j + pi-1pkpj 9 if q mi, j then 10 mi, j q; si, j k 11 return m and s,Running time: (n3),50,Example: min mi, k + mk+1, j + pi-1 pk pj,m2, 2 + m3, 5 + p1p2p5 m2, 3 + m4, 5 + p1p3p5 m2, 4 + m5, 5 + p1p4p5,1,1,2,3,6,2,3,6,i,j,4,5,4,5,m2, 5 =
39、min,Values mi, j depend only on values that have been previously computed,k = 2,k = 3,k = 4,51,Example: Compute A1A2A3,A1: 10100 (p0p1) A2: 1005 (p1p2) A3: 550 (p2p3) mi, i = 0 for i = 1, 2, 3 m1, 2 = m1, 1 + m2, 2 + p0p1p2 (A1A2) = 0 + 0 + 101005 = 5,000 m2, 3 = m2, 2 + m3, 3 + p1p2p3 (A2A3) = 0 +
40、0 + 100550 = 25,000 m1,1 + m2,3 + p0p1p3 = 75,000 (A1(A2A3) m1,2 +m3, 3 + p0p2p3 = 7,500 (A1A2)A3),1,1,2,2,3,3,m1,3 = min,52,4. Construct the Optimal Solution,Store the optimal choice made at each subproblem si, j = a value of k such that an optimal parenthesization of Ai.j splits the product betwee
41、n Ak and Ak+1 s1, n is associated with the entire product A1.n The final matrix multiplication will be split at k = s1,n A1.n = A1.s1, n As1, n+1.n For each subproduct recursively find the corresponding value of k that results in an optimal parenthesization,53,4. Construct the Optimal Solution (cont
42、.),si, j = value of k such that the optimal parenthesization of Ai Ai+1 Aj splits the product between Ak and Ak+1,1,1,2,3,6,2,3,6,i,j,4,5,4,5,s1,n=3 A1.6 = A1.3 A4.6 s1,3=1 A1.3 = A1.1 A2.3 s4,6=5 A4.6 = A4.5 A6.6,A1.n = A1.s1, n As1, n+1.n,54,4. Construct the Optimal Solution (cont.),1,1,2,3,6,2,3,
43、6,i,j,4,5,4,5,PrintParens(s, i, j) 1 if i = j then print “A”i 2 else print “(” 3 PrintParens(s, i, si, j) 4 PrintParens(s, si, j + 1, j) 5 print “)”,55,Example: A1 A6,1,1,2,3,6,2,3,6,i,j,4,5,4,5,PrintOPTParens(s, i, j) 1 if i = j then print “A”i 2 else print “(” 3 PrintOPTParens(s, i, si, j) 4 Print
44、OPTParens(s, si, j + 1, j) 5 print “)”,POP(s, 1, 6)s1, 6 = 3 i = 1, j = 6 “(“ POP (s, 1, 3) s1, 3 = 1 i = 1, j = 3 “(“ POP(s, 1, 1) “A1” POP(s, 2, 3) s2, 3 = 2 i = 2, j = 3 “(“ POP (s, 2, 2) “A2” POP (s, 3, 3) “A3” “)” “)”,(,(A4A5)A6),A1,(,A2,A3,),),(,s1.6, 1.6,56,4.4 The longest-common-subsequence
45、problem,Subsequence Common subsequence Maximum-length common subsequence Problem:Given two sequences Xm =and Yn = and wish to find a maximum-length common subsequence of Xm and Yn . E.g.: X = A, B, C, B, D, A, B Subsequences of X: A subset of elements in the sequence taken in order A, B, D, B, C, D,
46、 B, etc.,57,Example,X = A, B, C, B, D, A, B X = A, B, C, B, D, A, B Y = B, D, C, A, B, A Y = B, D, C, A, B, A B, C, B, A and B, D, A, B are longest common subsequences of X and Y (length = 4) B, C, A, however is not a LCS of X and Y,58,Brute-Force Solution,For every subsequence of Xm, check whether
47、its a subsequence of Yn There are 2m subsequences of Xm to check Each subsequence takes (n) time to check Scan Yn for first letter, from there scan for second, and so on Running time: (n2m),59,Notations,Given a sequence Xm = x1, x2, , xm we define the i-th prefix of Xm , for i = 0, 1, 2, , m Xi = x1
48、, x2, , xi ci, j = the length of a LCS of the sequences Xi = x1, x2, , xi and Yj = y1, y2, , yj,60,Step 1: Optimal substructure,Theorem (Optimal substructure of an LCS) Let Xm =and Yn = be sequences, and let Zk = be some LCS of Xm and Yn. 1. If xm = yn, then zk = xm = yn and zk-1 is an LCS of Xm-1 a
49、nd Yn-1. 2. If xm yn, and zk xm,then Zk is an LCS of Xm-1 and Yn. 3. If xm yn, and zk yn ,then Zk is an LCS of Xm and Yn-1.,61,Step 2: A recursive solution,Case 1: xi = yj e.g.: Xi = A, B, D, E Yj = Z, B, E Append xi = yj to the LCS of Xi-1 and Yj-1 Must find a LCS of Xi-1 and Yj-1 optimal solution
50、to a problem includes optimal solutions to subproblems,62,A Recursive Solution,Case 2: xi yj e.g.: Xi = A, B, D, G Yj = Z, B, D Must solve two problems find a LCS of Xi-1 and Yj: Xi-1 = A, B, D and Yj = Z, B, D find a LCS of Xi and Yj-1: Xi = A, B, D, G and Yj = Z, B Optimal solution to a problem in
51、cludes optimal solutions to subproblems,ci, j =,max ci - 1, j, ci, j-1 ,63,Overlapping Subproblems,To find a LCS of Xm and Yn We may need to find the LCS between Xm and Yn-1 and that of Xm-1 and Yn Both the above subproblems has the subproblem of finding the LCS of Xm-1 and Yn-1 Subproblems share su
52、bsubproblems,64,Step 3: Computing the Length of the LCS,0if i = 0 or j = 0 ci, j = ci-1, j-1 + 1if xi = yj max(ci, j-1, ci-1, j)if xi yj,yj:,xm,y1,y2,yn,x1,x2,xi,j,i,0,1,2,n,m,1,2,0,ci, j,65,Additional Information,0 if i, j = 0 ci, j = ci-1, j-1 + 1 if xi = yj max(ci, j-1, ci-1, j) if xi yj,yj:,D,A,
53、C,F,A,B,xi,j,i,0,1,2,n,m,1,2,0,A matrix bi, j: it tells us what choice was made to obtain the optimal value If xi = yj bi, j = “ ” Else, if ci - 1, j ci, j-1 bi, j = “ ” else bi, j = “ ”,3,3,C,D,b isolated difference: insertions, deletions, substitutions / rarely as one each hundred (100) characters
54、, to find the difference , two different sequencings (2)2 sequences 100s: whether a prefix similar to a suffix; if so, produced (3)2 sequences, is one is the subsequence of the other, to search certain sequence pattern (4)2 sequences : whether there are two similar substrings, one from each sequence
55、, similar, to analyze conservation sequence,77,comparing two sequences,alignments involving: global comparisons: entire sequences local comparisons: just substrings of sequences semiglobal comparisons: prefixes and suffixes dynamic programming (DP),78,global comparison- example,example of aligning G
56、ACGGATTAG GATCGGAATAG GA CGGATTAG GATCGGAATAG an extra T; a change from A to T; space: dash,79,global comparison- the basic algorithm,Definitions Alignment: insertion of spaces: same size creating a correspondence: one over the other Both space are not allowed (Spaces can be inserted in beginning or end) Scoring function : a measure of similarity between elements (nucleotides, amino acids, gaps); a match: +1/ identical characters a mismatch: -1/ distinct characters a space:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年1月份自动售货机蓄电池防盗报警合同
- 2024年10月人工智能生成内容权属划分特别约定
- 教学研究与反思计划
- 班级礼仪教育的实施计划
- 2025-2030中国铁路过道行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国金饰行业发展分析及市场竞争格局与发展前景预测研究报告
- 2025-2030中国遮瑕膏行业市场深度调研及发展策略研究报告
- 2025-2030中国远洋运输行业市场深度发展趋势与前景展望战略研究报告
- 2025-2030中国运动配件行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国转辙辊行业市场发展趋势与前景展望战略研究报告
- 《淞沪会战》课件
- 《社区共治共建共享研究的国内外文献综述》4300字
- 软件代码审计与测试作业指导书
- 上消化道出血护理疑难病例讨论记
- 城市轨道交通自动售票机
- 环境设计专业考察课程教学大纲
- 2024版互联网企业股东合作协议书范本3篇
- 企业环保知识培训课件
- 110kV立塔架线安全施工方案
- 完形填空-2025年安徽中考英语总复习专项训练(含解析)
- 《岁末年初重点行业领域安全生产提示》专题培训
评论
0/150
提交评论