版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四节直线与圆、圆与圆的位置关系考纲传真1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想(对应学生用书第116页) 基础知识填充1判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr相离(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式b24ac,0相交,0相切,0),圆O2:(xa2)2(yb2)2r(r20)方法位置关系几何法:圆心距d与r1,r2的关系代数法:联立两个圆的方程组成方程组的
2、解的情况相离dr1r2无解外切dr1r2一组实数解相交|r2r1|dr1r2两组不同的实数解内切d|r1r2|(r1r2)一组实数解内含0d|r1r2|(r1r2)无解知识拓展1圆的切线(1)过圆x2y2r2上一点P(x0,y0)的圆的切线方程是xx0yy0r2;(2)过圆(xa)2(yb)2r2上一点P(x0,y0)的圆的切线方程是(xa)(x0a)(yb)(y0b)r2.(3)过圆x2y2r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0xy0yr2.2直线被圆截得的弦长弦心距d、弦长a的一半a及圆的半径r构成一直角三角形,且有r2d22.3圆与圆的位置关系的常用结论(1
3、)两圆的位置关系与公切线的条数:内含:0条;内切:1条;相交:2条;外切:3条;相离:4条(2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程基本能力自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)“k1”是“直线xyk0与圆x2y21相交”的必要不充分条件()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切()(3)如果两圆的圆心距小于两半径之和,则两圆相交()(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程()解析依据直线与圆、圆与圆的位置关系,只有(4)正确答案(1)(2)(3)(4)2
4、(教材改编)圆(x2)2y24与圆(x2)2(y1)29的位置关系为()A内切B相交C外切D相离B两圆圆心分别为(2,0),(2,1),半径分别为2和3,圆心距d.32d32,两圆相交3(2017合肥调研)直线3x4yb与圆x2y22x2y10相切,则b的值是()A2或12B2或12C2或12D2或12D由圆x2y22x2y10,知圆心(1,1),半径为1,所以1,解得b2或12.4在平面直角坐标系xOy中,直线x2y30被圆(x2)2(y1)24截得的弦长为_圆心为(2,1),半径r2.圆心到直线的距离d,所以弦长为22.5(2018张家口模拟)已知直线12x5y3与圆x2y26x8y160
5、相交于A,B两点,则|AB|_. 【导学号:】4把圆的方程化成标准方程为(x3)2(y4)29,所以圆心坐标为(3,4),半径r3,所以圆心到直线12x5y3的距离d1,则|AB|24.(对应学生用书第117页)直线与圆的位置关系(1)(2018开封模拟)直线l:mxy1m0与圆C:x2(y1)25的位置关系是()A相交B相切C相离D不确定(2)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为_(3)(2016全国卷)设直线yx2a与圆C:x2y22ay20相交于A,B两点,若|AB|2,则圆C的面积为_(1)A(2)x2y50(3)4(1)法一:圆心(0,1)到直线l的距
6、离d10)截直线xy0所得线段的长度是2,则圆M与圆N:(x1)2(y1)21的位置关系是()A内切B相交C外切D相离(2)(2018汉中模拟)若圆x2y24与圆x2y22ay60(a0)的公共弦长为2,则a_.(1)B(2)1(1)法一:由得两交点为(0,0),(a,a)圆M截直线所得线段长度为2,2.又a0,a2.圆M的方程为x2y24y0,即x2(y2)24,圆心M(0,2),半径r12.又圆N:(x1)2(y1)21,圆心N(1,1),半径r21,|MN|.r1r21,r1r23,1|MN|0)x2(ya)2a2(a0),M(0,a),r1A圆M截直线xy0所得线段的长度为2,圆心M到
7、直线xy0的距离d,解得a2.以下同法一(2)方程x2y22ay60与x2y24.两式相减得:2ay2,则y.由已知条件,即a1.规律方法1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系2若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到3若两圆相交,则两圆的连心线垂直平分公共弦变式训练2(1)圆x2y26x16y480与圆x2y24x8y440的公切线条数为()A1B2C3D4(2)(2017山西太原模拟)若圆C1:x2y21与圆C2:x2y26x8ym0外切,则m()A21B19C9D11(1)B(2)C(1)将两圆x2y26x16y480与x2y2
8、4x8y440化为标准形式分别为(x3)2(y8)2112,(x2)2(y4)282.因此两圆的圆心和半径分别为O1(3,8),r111;Q2(2,4),r28.故圆心距|O1O2|13.又|r1r2|O1O2|r1r2|,因此两圆相交,公切线只有2条(2)圆C1的圆心为C1(0,0),半径r11,圆C2的方程可化为(x3)2(y4)225m,所以圆C2的圆心为C2(3,4),半径r2(m25)从而|C1C2|5.由两圆外切得|C1C2|r1r2,即15,解得m9,故选C直线与圆的综合问题 (2016江苏高考改编)如图841,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2y212x14y
9、600及其上一点A(2,4)(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BCOA,求直线l的方程 【导学号:】图841解圆M的标准方程为(x6)2(y7)225,所以圆心M(6,7),半径为5.1分(1)由圆心N在直线x6上,可设N(6,y0)因为圆N与x轴相切,与圆M外切,所以0y07,圆N的半径为y0,从而7y05y0,解得y01.4分因此,圆N的标准方程为(x6)2(y1)21.5分(2)因为直线lOA,所以直线l的斜率为2.设直线l的方程为y2xm,即2xym0,则圆心M到直线l的距离d.8分因为BCOA2,而MC2d22,所以255,解得m5或m15.故直线l的方程为2xy50或2xy150.12分规律方法1.(1)设出圆N的圆心N(6,y0),由条件圆M与圆N外切,求得圆心与半径,从而确定圆的标准方程(2)依据平行直线,设出直线l的方程,根据点到直线的距离公式及勾股定理求解2求弦长常用的方法:弦长公式;半弦长、半径、弦心距构成直角三角形,利用勾股定理求解(几何法)变式训练3在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:xy4相切(1)求圆O的方程;(2)若圆O上有两点M,N关于直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中式面点师理论培训
- 中考数学二轮复习专项21~23题对点提分训练(二)课件
- 统编版2024-2025学年三年级语文上册期中考试卷(含答案)
- 山东省菏泽市第一中学2024-2025学年高二上学期第二次月考数学试题(含答案)
- 2024年高一上学期10月份月考测试卷
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)课件 易月娥 项目9、10 VPN服务器的配置与管理、NAT服务器的配置与管理
- 面向SDG的国网行动-破解电力线路与自然的冲突
- 大单元教学理念及其定义、特点与实施策略
- 高中物理第一章电与磁第二节点电荷间的相互作用课件粤教版选修1-
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)10.1 知识引入
- 2023光伏并网柜技术规范
- 2024届中国电信数智科技限公司秋季校园招聘高频500题难、易错点模拟试题附带答案详解
- 2024至2030年互联网+鸡蛋市场前景研究报告
- 艺术鉴赏智慧树知到答案2024年陕西财经职业技术学院
- DBJ15 31-2016建筑地基基础设计规范(广东省标准)
- 2024年村官面试试题及答案
- 2024中科信工程咨询(北京)限责任公司招聘6人高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024版离婚退还彩礼协议
- 小学语文作业设计评价表
- 小学二年级数学第一学期奥数竞赛试题人教版
- 亲子沟通与孩子心理健康
评论
0/150
提交评论