2018版高中数学 第三章 三角恒等变换 3.2 第1课时 二倍角的三角函数学案 苏教版必修4_第1页
2018版高中数学 第三章 三角恒等变换 3.2 第1课时 二倍角的三角函数学案 苏教版必修4_第2页
2018版高中数学 第三章 三角恒等变换 3.2 第1课时 二倍角的三角函数学案 苏教版必修4_第3页
2018版高中数学 第三章 三角恒等变换 3.2 第1课时 二倍角的三角函数学案 苏教版必修4_第4页
2018版高中数学 第三章 三角恒等变换 3.2 第1课时 二倍角的三角函数学案 苏教版必修4_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第1课时二倍角的三角函数学习目标1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用知识点二倍角公式思考1根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?思考2根据同角三角函数的基本关系式sin2cos21,你能否只用sin 或cos 表示cos 2?梳理(1)倍角公式sin 2_.(S2)cos 2_.(C2)tan 2_.(T2)(2)二倍角公式的重要变形升幂公式1cos 2_,1cos 2_,1cos _,1cos _ .类型一给角求值例1求下列各式的值:(1

2、)cos 72cos 36;(2)cos215;(3);(4).反思与感悟对于给角求值问题,一般有两类(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式跟踪训练1求下列各式的值:(1)cos cos cos ;(2).类型二给值求值例2(1)若sin cos ,则sin 2_.(2)若tan ,则cos22sin 2_.引申探究在本例(1)中,若改为sin cos ,求s

3、in 2.反思与感悟(1)条件求值问题常有两种解题途径:对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论(2)一个重要结论:(sin cos )21sin 2.跟踪训练2已知tan 2.(1)求tan的值;(2)求的值类型三利用倍角公式化简例3化简.反思与感悟(1)对于三角函数式的化简有下面的要求:能求出值的应求出值使三角函数种数尽量少使三角函数式中的项数尽量少尽量使分母不含有三角函数尽量使被开方数不含三角函数(2)化简的方法:弦切互化,异名化同名,异角化同角降幂或升幂一个重要结论:(sin cos

4、 )21sin 2.跟踪训练3化简下列各式:(1),则_;(2)为第三象限角,则_.1.sin cos 的值为_2sin4cos4_.3._.4设sin 2sin ,则tan 2的值是_5化简:(1);(2).1对于“二倍角”应该有广义上的理解,如:8是4的二倍;6是3的二倍;4是2的二倍;3是的二倍;是的二倍;是的二倍;(nN*)2二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛二倍角的常用形式:1cos 22cos2;cos2;1cos 22sin2;sin2.答案精析问题导学知识点思考1sin 2sin()sin cos cos sin 2sin cos ;co

5、s 2cos()cos cos sin sin cos2sin2;tan 2tan().思考2cos 2cos2sin2cos2(1cos2)2cos21;或cos 2cos2sin2(1sin2)sin212sin2.梳理(1)2sin cos cos2sin212sin22cos21(2)2cos22sin22cos22sin2题型探究例1解(1)cos 36cos 72.(2)cos215(2cos2151)cos 30.(3)222.(4)4.跟踪训练1解(1)原式.(2)原式4.例2(1)(2)引申探究解由题意,得(sin cos )2,12sin cos ,即1sin 2,sin 2.跟踪训练2解(1)t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论