线面角的求法ppt课件_第1页
线面角的求法ppt课件_第2页
线面角的求法ppt课件_第3页
线面角的求法ppt课件_第4页
线面角的求法ppt课件_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、直线与平面的夹角 高二、二部 刘静,1,一、教学目标:,1、知识与技能:掌握直线在平面内的射影及斜线与平面所成角的概念,并会求直线与平面所称的角。掌握最小角定理并会利用公式解决一些问题。,2、过程与方法: (1)空间想象能力:认识直线与平面的位置关系,遵循从实图和简单的几何体入手,逐步培养学生的几何直观和空间想象能力。 (2)转化的思想方法:在二维与三维空间的转化及线面角与线线角的转化过程中,体现出转化的思想方法。 (3)逻辑思维与运算能力:通过对线面角大小的求解,加强算中有证,以证助算,以培养学生的逻辑思维能力及运算能力。,3、情感、态度与价值观:体验概念的形成过程,培养创新意识和数学应用意

2、识,提高学习数学的兴趣。,二、教学重点和难点:,重点:线面角的概念、最小角定理,难点:线面角的求法,三、教学方法:启发探究,四、教学过程:,2,问题1:直线与平面的位置关系有哪几种?,规定: 如果一条直线与一个平面垂直,我们规定这条直线和平面的夹角为 。 如果一条直线与一个平面平行或在平面内,我们规定这条直线和平面的夹角为 。,问题2: 平面的一条斜线与平面的夹角如何定义呢?,3,O,A,B,4,研究斜线与平面内的任意直线所成角的关系:,0,A,B,已知OA是平面 的斜线段,O是斜足,线段AB垂直于 ,B为垂足,则直线OB是斜线OA在平面内的射影。设OM是平面内通过点O的任意条直线 OA与OB

3、所成的角为 OB与OM所成的角为 OA与OM所成的角为,证明: (向量法),5,下面我们用向量的运算来研究它们之间的关系:,在直线OM上取单位向量m,(同学们自己推导三个角度之间的关系),6,斜线与平面所成的角,1、最小角定理: 斜线和它在平面内的射影所成的角,是斜线与这个平面内所有直线所成角中最小的角。,2、规定:斜线和它在平面内的射影所成的角叫做斜线和平面所成的角(或斜线和平面的夹角)。,说明: (1)实质:空间角平面角; 线面角线线角; (2)线面角的范围 :斜线 直线,7,例1、正方形 的棱长为1。,(1)直线 与平面ABCD所成的角 (2)直线 与平面 所成的角,O,8,例1、正方形

4、 的棱长为1。,(1)直线 与平面ABCD 所成的角 (2)直线 与平面 所成的角,O,连接 交 于点 ,连接,解:,找(作),证,求,答,9,例1、正方形 的棱长为1。,(1)直线 与平面ABCD所成的角 (2)直线 与平面 所成的角,O,以点D为原点建立空间直角坐标系D;X,Y,Z, 如图所示,向量法:,10,求线面角的方法:,(1)定义法:1、找;2、证;3、求;4、答,(2)向量法:1、建系;2、求法向量;3、求角;4、结论,11,练习:,选择题: 1、正四棱锥P-ABCD的所有棱长相等,E为PC中点,那么异面直线PA 平面ABCD所成角的余弦值等于( ),2、在正三棱锥S-ABC中,D为AB中点,且SD与BC所成角为450,则SD 与底面所成角的正弦值为( ),3、三棱锥P-ABC中, 为等边三角形,且 ,D是PC中点,则BD与平面ABC所成角的正切值为(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论