全等三角形的判定SAS(精品公开课)_第1页
全等三角形的判定SAS(精品公开课)_第2页
全等三角形的判定SAS(精品公开课)_第3页
全等三角形的判定SAS(精品公开课)_第4页
全等三角形的判定SAS(精品公开课)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,全等三角形的判定2,边角边公理,三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。,在ABC和 DEF中, ABC DEF(SSS),用符号语言表达为:,三角形全等判定方法1,除了SSS外,还有其他情况吗?继续探索三角形全等的条件.,思考,(2) 三条边,(1) 三个角,(3) 两边一角,(4) 两角一边,当两个三角形满足六个条件中的三个时,有四种情况:,SSS,不能!,?,继续探讨三角形全等的条件:,两边一角,思考:已知一个三角形的两条边和一个角,那么这两条边 与这一个角的位置上有几种可能性呢?,图一,图二,在图一中, A,是AB和AC的夹角,,符合图一的条件,它可称为“两

2、边夹角”。,符合图二的条件, 通常 说成“两边和其中一边的对角”,注意条件书写顺序,1.在下列图中找出全等三角形,练习一,2.在下列推理中填写需要补充的条件,使结论成立: (1)如图,在AOB和DOC中,AO=DO(已知) _=_( ) BO=CO(已知) AOBDOC( ), AOB, DOC,对顶角相等,SAS,(2)如图,在AEC和ADB中,,AE =AD (已知) _= _( ) AC= AB (已知) AECADB( ),A,E,B,D,C,SAS,A,A,公共角,3.已知: 如图,AC=AD,CAB=DAB. 求证: BC=BD.,证明:在ACB和ADB中,,AC=AD (已知),

3、CAB=DAB(已知),AB=AB(公共边), ACB ADB(SAS),BC=BD(全等三角形的对应边相等),4.已知:如图,AB=AC,AD=AE. 求证:B=C,证明:在ADB和AEC中,,AB=AC (已知),A=A(公共角),AD=AE(已知), ADBAEC(SAS),(全等三角形的对应角相等), B=C,如图,有一池塘,要测池塘两端A、B的距离,可在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA,连结BC并延长至E使CE=CB,连结ED,那么量出DE的长,就是A、B的距离,为什么?,解决问题,B,A,D,E,证明:在ABC和DEC中,,AC=DC(已知),ACB=DCE(对顶角相等),BC=EC(已知),ABCDEC(SAS),AB=DE,(全等三角形的对应边相等),如图,已知:AB=AC,则添加什么条件可得ABD ACD?请说明理由.,拓展(1),(1)补充A=A,AB=AC (已知),A=A(已知),AD=A(公共边), AAC(SAS),(2)补充,AB=AC (已知),AD=A(公共边), AAC(S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论