第二章 光纤传输特性_第1页
第二章 光纤传输特性_第2页
第二章 光纤传输特性_第3页
第二章 光纤传输特性_第4页
第二章 光纤传输特性_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.6 光纤传输特性,主要内容,损耗 色散 光纤的带宽和冲激响应 光纤中的非线性效应 单模光纤性能指标,2.6.1损耗,1、损耗的定义: 当光在光纤中传输时,随着传输距离的增加,光功率逐渐减小,这种现象即称为光纤的损耗。 2、损耗一般用损耗系数表示: (单位:dB/km) 损耗大小影响光纤的传输距离长短和中继距离的选择 ,影响光纤通信系统的成本,3、损耗的种类,吸收损耗 散射损耗 其他损耗,吸收损耗,本征吸收损耗是由于光纤材料本身吸收光能量产生的。主要存在红外波段的分子振动吸收和紫外波段的电子跃迁吸收。红外吸收对长波长有影响,紫外吸收对短波长有影响。 杂质吸收损耗主要是由于光纤中含有的各种过渡

2、金属离子和氢氧根(OH-)离子在光的激励下产生振动,吸收光能量造成。 (OH-)离子的吸收对光通信的长波长影响比较大(主要在1.38um)。,散射损耗,散射损耗是指在光纤中传输的一部分光由于散射而改变传输方向,从而使一部分光不能到达收端所产生的损耗。主要包含瑞利散射损耗、 非线性散射损耗和波导效应散射损耗。 瑞利散射损耗是由于光纤材料折射率分布小尺寸的随即不均匀性所引起的本征损耗。瑞利散射损耗与波长的四次方成反比,即波长越短,损耗越大。因此对短波长窗口影响较大。 非线性散射损耗是当光强度大到一定程度时,产生非线性喇曼散射和布里渊散射,使输入光信号的能量部分转移到新的频率成分上而形成损耗。因此非

3、线性散射损耗是随传播频率变化的。在常规光纤中由于半导体激光器发送光功率较小,该损耗可忽略。但在DWDM系统中,由于总功率很大,就必须考虑其影响。 波导效应散射损耗是由于光纤波导结构缺陷引起的损耗,与波长无关。光纤波导结构缺陷主要由熔炼和拉丝工艺不完善造成。,其他损耗,主要是连接损耗和弯曲损耗和微弯损耗。 连接损耗是由于进行光纤接续是端面不平整或光纤位置未对准等原因造成接头处出现损耗。其大小与连接使用的工具和操作者技能有密切关系。 弯曲损耗是由于光纤中部分传导模在弯曲部位成为辐射模而形成的损耗。它与弯曲半径成指数关系,弯曲半径越大,弯曲损耗越小。 微弯损耗是由于成缆时产生不均匀的侧压力,导致纤芯

4、与包层的界面出现局部凹凸引起。,连接与耦合损耗:,弯曲损耗(宏弯损耗和微弯损耗) 单模光纤中的宏弯损耗:a)光纤中的模场分布 b)弯曲光纤中的模场分布,微弯损耗,宏弯损耗,弯曲损耗是光信息传输所受衰减的主要原因之一,它与光纤敷设的弯曲半径有关,最小弯曲半径常作为光纤的一项参数给出。 弯曲半径应超出光纤包层直径的150倍;对短期应用,应超过包层直径的100倍。如果包层直径为125m的话,这两个数值分别19mm和13mm。 利用光纤的弯曲损耗特性,可以在光纤链路上引入一些可控的衰减。在需要对光进行可控衰减时,通过将光纤绕上几圈就可以实现,所绕圈数和半径均可控制衰减量。,4 光纤的损耗波谱曲线,损耗

5、dB/km,一般测试曲线,长波长窗口,瑞利散射,波导缺陷吸收,紫外吸收,红外吸收,短波长窗口,光纤通信所使用的三个低损耗窗口: 0.85um 约为 2.5dB/km 1.31um 约为 0.5dB/km 1.55um 约为 0.2dB/km,2.6.2 光波导中信号失真,1什么是色散,色散的分类 名词:色散 信号在光纤中是由不同的频率成份和不同的模式成份携带的,这些不同的频率成份和模式成份有不同的传播速度,使得光纤输出波形在时间上产生展宽。 色散种类:模内色散(色度色散)和模间色散,偏振模色散(单模光纤中)。,2 模内色散(色度色散),模内色散包括材料色散和波导色散 材料色散:纤芯的材料的折射

6、率随波长的变化导致色散。折射率随波长的变化,使不同波长的群速度不同,造成时延差,发生脉冲展宽。在1.27um处最小 波导色散:原因是由于光纤中只有80%的光功率在纤芯中传播,20%在包层中传播,由于包层中传播速率大于纤芯,就出现色散。波导色散的大小取决于光纤的设计,色度色散,3 偏振模色散,4 模间色散,模间色散产生的原因:即使在同一频率的光,不同的模式群速率不一样,也产生色散。它主要取决于光纤的折射率分布。 模间色散主要存于多模光纤中。,5 光纤各种色散对传输的影响:,6 色散效应对高速通信系统的影响,10 Gb/s,40 Gb/s,7 阶跃型光纤的模式色散,在阶跃型光纤中,当光线端面的入射

7、角小于端面临界角时,将在纤芯中形成全反射。若每条光线代表一种模式,则不同入射角的光线代表不同的模式,不同入射角的光线,在光纤中的传播路径不同,而由于纤芯折射率均匀分布,纤芯中不同路径的光线的传播速度相同,因此不同路径的光线到达输出端的时延不同,从而产生脉冲展宽,形成模式色散。,渐变型光纤中光线的传播路径是近似于正弦形曲线,其中正弦幅度大的光线传播距离长,而正弦幅度小的光线传输路程短,但由于渐变型光纤纤芯折射率分布在轴心处最大并沿径向逐渐减小,所以正弦幅度最大的光线由于离轴心远,折射率小而传播速率高,而正弦幅度最小的光线由于离轴心近,折射率大而传播速率低,结果在到达输出端时相互之间的时延差近似为

8、零,从而使渐变型多模光纤的模式色散较小。 一般渐变型多模光纤的每公里长度上的最大时延差为,8 渐变型光纤的模式色散,9 单模光纤:色度色散和偏振模色散 色度色散 两类:材料色散 波导色散 色度色散参数为波长的函数;,偏振模色散: 两个偏振模式因光纤的不完善而出现传输常数的差异时产生的色散 偏振模色散与色度色散相比相对较小,表2-7 PMD与系统传输速率以及最大传输距离的关系,2.6.3 光纤的带宽和冲激响应,光纤色散的大小除了用输出脉冲的展宽来表 征外,还可以用光纤的带宽来表征。 在被测光纤上输入一个单色光,并对它进行 强度调制,改变调制频率,观察光纤的输出光功率与调制频率的关系,从而得到光纤

9、的频率响应。,1. 光纤的带宽,带宽的表示可用光带宽和电带宽两种表示方法。 因为 表示经光纤传输后,输出光功率下降3dB,此时称fc为光纤的光带宽。光检测器输出的电流是正比于被检测的光功率,因此可用电流来 表示: 此时称fc为光纤的电带宽。 显然,我们所说的-3dB光带宽和-6dB电带宽,实际上是光纤的同一带宽。,2.6.4 光纤中的非线性效应,1. 受激拉曼散射(SRS)阀值较高,高频率信道的能量可能通过受激拉曼散射向低频率信道的信号的转移,多出现在波分复用WDM系统中. 2. 受激布里渊散射(SBS)增益谱很窄(约10100MHz)只要对信号载频设计得好,可以很容易地避免SBS引起的干扰,

10、2.6.4 光纤中的非线性效应,3. 交叉相位调制(XPM)多出现在相干检测方式中, 4. 四波混频(FWM)当传输光工作在光纤的零色散波长附近时,四波混频的相位条件可能得到满足,2.6.5 单模光纤性能介绍,色散平坦光纤:充分利用1.3um至1.55um整个波段,可以大幅度提高通信容量 色散位移光纤(DSF):将零色散点移至1.55um处,与光纤最低损耗波段一致,从而得到最低损耗和最低色散。但不利于多信道传输(主要有四波混频的影响,如有少量色散FWM反而干扰减少) 非零色散位移光纤(NZDSF):是一种改进的色散位移光纤,在光纤制作中,适当控制掺杂量,大到足以抑制DWDM中的四波混频,小到足

11、以允许单信道10Gb/s,而不需色散补偿。 色散补偿光纤(DCF):利用一段光纤来补偿光纤中的色散。能够实现这种功能的光纤称为DCF光纤。如常规的单模光纤在1.55um波长区为正色散值,那么DCF光纤应该具有负色散值,零色散值在1.7um以上。,三种光纤色散情况比较,正常色散区,反常色散区,大多数已安装的光纤 低损耗 大色散分布 大有效面积 色散受限距离短 2.5Gb/s系统色度色散受限距离约600km 10Gb/s系统色度色散受限距离约34km G.652+DCF方案升级扩容成本高 结论: 不适用于10Gb/s以上速率传输,但可应用于 2.5Gb/s以下速率的DWDM。,G.652单模光纤(NDSF),低损耗 零色散 小有效面积 长距离、单信道超高速EDFA系统 四波混频(FWM)是主要的问题,不利于DWDM技术 结论: 适用于10Gb/s以上速率单信道传输,但不适用于 DWDM应用,处于被市场淘汰的现状。,G.653单模光纤(DSF),在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论