版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章 中世纪的中国数学,主讲人:翟影 搜集资料:刘玲 ppt制作:李艾娟,希腊几何的演绎精神,随着希腊文明的衰微而在整个中世纪的欧洲湮没不彰。数学史上继希腊几何兴盛时期之后是一个漫长的东方时期。中世纪(公元5-17世纪)数学的主角,是中国、印度与阿拉伯地区的数学。,与希腊数学相比,中世纪的东方数学表现出强烈的算法精神,特别是中国与印度数学,着重算法的概括,不讲究命题的数学推导。,就繁荣时期而言,中国数学在上述三个地区是延续最长的。从公元前后至公元14世纪,先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期以及宋元时期,其中宋元时期达到了中国古典数学的顶峰。,3.1周髀算经与九章算术,3.1.
2、1 古代背景,第一章中已涉及了中国远古数与形概念的萌芽。殷商甲骨文中已经使用完整的十进制记数。至迟到春秋战国时代,又开始出现严格的十进位值制筹算记数。,孙子算经中记载的筹算记数法则说:“凡算之法,先识其位。一纵十横,百立千僵。千十相望,百万相当”。,纵式用来表示个位、百位、万位,数字;横式用来表示十位、千位、十万位、数字。纵、横相间,零则以空位表示。这样,数76 031用算筹表示出来是 。这种十进位值记数法是中国古代数学对人类文明的特殊贡献。,关于几何学,史记“夏本纪”记载说:夏禹治水,“左规矩,右准绳”。“规”是圆规,“矩”是直尺,“准绳”则是确定铅垂方向的器械。,中国古代数学的萌芽,社会历
3、史背景条件 相对封闭的疆域 大河背景下的农耕文化 集中的王权 中国数学的特点 形成了以计算为核心的算法理论 具有浓郁应用色彩 中国数学的成就 第一部数学著作九章算术(大约公元前200年左右) 公元3世纪至13世纪,创造了许多领先于其它民族的众多数学成果,形成国家数学教育的体制,中国古代数学的萌芽,中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。,中国古代数学的萌芽,“数学”一词相当于我国古代的“算术” 数学一词,在中国最早出现在12世纪宋代数学家秦九韶的
4、著作中。他指出“物生有象,象生有数,乘除推阐,务究造化之源者,是数学”。,中国古代数学的萌芽,战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。 儒家以“九数”为核心,具有鲜明的政治和人文色彩,并以周易象数学宇宙论为哲学依托. 墨家则以几何学为核心,具有一定的抽象性和思辨性,以墨经的逻辑学为其论说的工具。 名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 九章算术中的名题:“女子善织,日子倍”。,3
5、.1.2周髀算经,在现存的中国古代数学著作中,周髀算经是最早的一部。 作者不祥,成书年代应不晚于公元前2世纪西汉时期,但书中涉及的数学、天文知识,有的可追溯到西周(公元前11世纪-前8世纪)。这部著作实际上是从数学上讨论“盖天说”(天圆地方)宇宙模型,反映了中国古代数学与天文学的密切联系。从数学上看,周髀算经主要的成就是分数运算、勾股定理及其在天文测量中的应用,其中关于勾股定理的论述最为突出。,“周髀”是测量日影的工具八尺长竿,盖天说,勾股定理,宋版书影,日高术,周髀算经: 数学著作,天文学著作. “盖天说”的代表. 约成书于西汉时期(公元前2世纪). 数学内容:学习数学的方法、用勾股定理来计
6、算高深远近和比较复杂的分数计算等.,周髀算经,盖天说认为大地象个平面,天象口大锅扣在地上。 注:到西汉时期,有盖天说、浑天说和宣夜说。 浑天说认为天是球形的,大地在中间。 宣夜说认为宇宙是无限的空间,天体浮生于其中,其运动需要“气”的作用。,周髀算经上卷 :勾股定理的证明,昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度夫天可不阶而升,地不可得尺寸而度,请问数安从出?” 商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。”,“勾
7、广三,股修四,径隅五”,商高定理-勾股定理,返回,“以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日.”,古典数学的形成与发展时期,周人的测日影表 古代认为夏至时立一8尺高的标竿,它的影长正好是6尺。 “求邪至日者,以日下为勾,以日高为股,勾股各自乘,并而开方除之,得邪至日从髀所旁至日所十万里。”,日高公式(重差术):,影差d =后影长BD 前影长AC = b a,表距AB = e,中国数学史上最先完成勾股定理证明的数学家,是公元3世纪三国时期的赵爽(吴)。赵爽注周髀算经,作“勾股圆方图”,其中的“弦图”,相当于运用面积的出入相补证明了勾股定理。,考察以一直角三角形的勾和股为边的两个正
8、方形的合并图形,其面积应有 如果将这合并图形所含的两个三角形移补到图中所示的位置,将得到一个以原三角形之弦为边的正方形,其面积应为 ,因此,古代数学家赵爽,赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约生活于公元3世纪初。赵爽的周髀算经注逐段解释周髀经文。,3.1.3九章算术,九章算术是中国古典数学最重要的著作。成书年代至迟在公元前1世纪,其中的数学内容,有些也可以追溯到周代。 周礼记载,西周贵族子弟必学的六门课程(“六艺”)中有一门是“九数”,刘徽九章算术注“序”中就称九章算术是由“九数”发展而来,并经过西汉张苍(?-公元前152
9、)、耿寿昌等人删补。,九章算术采用问题集的形式,全书246个问题,分成九章。,中国古代数学体系形成,九章算术是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。,九章算术的内容是由周代的“九数”发展而
10、来的。刘徽称:“周公制礼而有九数,九数之流则九章是矣”。,九章算术标志着中国传统数学的知识体系已初步形成。 代表了中国传统数学体系和思想方法的特点:注重实际问题的数值计算方法,缺少抽象的理论和逻辑系统性,使用算筹,形成世界上独有的计算工具和程序化计算方法,明代刊印的九章算术注,中国古代数学体系形成,九章算术在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。,1.方田:主要是田亩面积的计算和分数的计算,是世界 上最早对分数进行系统叙述的著作。 2.粟米:组好事粮食交易的计算
11、方法,其中涉及许多比 例问题。 3.衰(读作“翠”)分:主要内容为分配比例的算法。 4.少广:主要讲开平方和开立方的方法。 5.商功:主要是土石方和用工量等工程数学问题,以体 积的计算为主。 6.均输:计算税收等更加复杂的比例问题。 7.盈不足:双设法的问题。 8.方程:主要是联立一次方程组的解法和正负数的加减 法,在世界数学史上是第一次出现。 9.勾股:勾股定理的应用。,九章算术的内容,(一)算术方面,(1)分数四则运算法则。九章算术“方田”章给出了完整的分数加、减、乘、除以及约分和通分运算法则。 (2)比例算法。九章算术“粟米”、“衰分”、“均输”诸章集中讨论比例问题,并提出“今有术”作为
12、解决各类比例问题的基本算法。 (3)盈不足术。“盈不足”术是以盈亏类问题为原型,通过两次假设来求繁难算术问题的解的方法。 “盈不足术”在中世纪阿拉伯数学著作中称为“契丹算法”,即中国算法。,(二)代数方面,(1)方程术。“方程术”即线性联立方程组的解法。 (2)正负术。九章算术在代数方面的另一项突出贡献是负数的引进。 (3) 开方术。九章算术“少广”章有“开方术”和“开立方术”,给出了开平方和开立方的算法。九章算术开方术本质上是一种减根变换法,开创了后来开更高次方和求高次方程数值解之先河。,(三)几何方面,九章算术“方田”、“商功”和“勾股”三章处理几何问题。其中“方田”章讨论面积问题,“商功”章讨论体积问题,“勾股”章则是关于勾股定理的应用。,各种几何图形的名称就反映着它们的现实来源。如平面图形有“方田”(正方形)、“直田”(矩形)、“圭田”(三角形)、“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人结算账户培训
- 培训师自我简介
- 山西省现代双语学校南校2024-2025学年高三上学期11月月考历史试题 - 副本
- 河北省唐山市迁安市2024-2025学年七年级上学期期中道德与法治试题(含答案)
- 2024-2025学年江苏省苏州市吴江区苏州湾实验初级中学八年级(上)数学十月月考试卷(含答案)
- T-YNZYC 0080-2023 绿色药材 蜘蛛香产地加工规程
- T-XMSSAL 0115-2024 供厦食品 速冻调制肉制品
- 中考英语 八年级上册 重点词组及语法专项复习 人教新目标版
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)5.7 拓展案例3:配置FTP站点用户隔离
- 高中语文第5单元散而不乱气脉中贯2伶官传序课件新人教版选修中国古代诗歌散文欣赏
- 《原始人的创造》ppt
- 大学生城市轨道职业规划
- 河道管理条例培训课件
- 企业如何应对政治和地缘风险
- 《数字电子技术基础 第4版》 课件 第 3、4 章 组合逻辑电路、锁存器和触发器(第4版)
- 高尔夫亲子活动方案
- 2023年陆上石油天然气开采安全生产管理人员考前备考300题(含答案)
- 数字经济概论课件:数字贸易
- 《化妆基础教程》课件
- 多元线性回归与Logistic回归
- 血站血液制备培训课件
评论
0/150
提交评论