九年级中考2025年安徽中考数学真题汇编 专题17 图形的变换_第1页
九年级中考2025年安徽中考数学真题汇编 专题17 图形的变换_第2页
九年级中考2025年安徽中考数学真题汇编 专题17 图形的变换_第3页
九年级中考2025年安徽中考数学真题汇编 专题17 图形的变换_第4页
九年级中考2025年安徽中考数学真题汇编 专题17 图形的变换_第5页
已阅读5页,还剩130页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题17图形的变换课标要求考点考向能够在格点中进行图形的平移、旋转、对称等变换作图。明确变换的性质和规律,准确找出图形变换后对应点的位置,进而作出变换后的图形。学生不仅要能作出图形,还要理解作图的原理和依据,能够运用几何知识对所作图形的合理性进行解释和证明,将作图与几何推理、计算等相结合,解决相关问题。了解比例的基本性质、了解相似三角形的判定定理:了解相似三角形判定定理的证明。了解相似三角形的性质定理、了解图形的位似,知道利用位似可以将一个图形放大或缩小。知道特殊角的三角函数值。会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角。在平面上,能用方位角和距离刻画两个物体的相对位置。能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。格点作图考向一平移考向二对称考向三旋转考向四位似相似三角形考向一相似三角形的性质与判定考向二相似三角形综合解直角三角形考向一三角函数考向二解直角三角形的应用考点一格点作图►考向一平移1.(2024·山东青岛·中考真题)如图,将正方形先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转,得到四边形,则点A的对应点的坐标是(

)A. B. C. D.2.(2024·海南·中考真题)平面直角坐标系中,将点A向右平移3个单位长度得到点,则点A的坐标是(

)A. B. C. D.3.(2024·四川资阳·中考真题)在平面直角坐标系中,将点沿y轴向上平移1个单位后,得到的点的坐标为(

)A. B. C. D.4.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为(

)A.或 B.或 C.或 D.或5.(2024·山东淄博·中考真题)如图,已知,两点的坐标分别为,,将线段平移得到线段.若点的对应点是,则点的对应点的坐标是.6.(2024·江苏无锡·中考真题)在探究“反比例函数的图象与性质”时,小明先将直角边长为5个单位长度的等腰直角三角板摆放在平面直角坐标系中,使其两条直角边分别落在轴负半轴、轴正半轴上(如图所示),然后将三角板向右平移个单位长度,再向下平移个单位长度后,小明发现两点恰好都落在函数的图象上,则的值为.►考向二对称1.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于y轴对称的,并写出点的坐标;2.(2023·黑龙江·中考真题)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,.

(1)将向上平移4个单位,再向右平移1个单位,得到,请画出.3.(2023·山东枣庄·中考真题)(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.

(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.

4.(2022·吉林·中考真题)图①,图②均是的正方形网格,每个小正方形的顶点称为格点.其中点,,均在格点上.请在给定的网格中按要求画四边形.(1)在图①中,找一格点,使以点,,,为顶点的四边形是轴对称图形;(2)在图②中,找一格点,使以点,,,为顶点的四边形是中心对称图形.5.(2020·吉林·中考真题)如图①、图②、图③都是的正方形网格,每个小正方形的顶点称为格点.,,均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与重合的线段,使与关于某条直线对称,且,为格点.(2)在图②中,画一条不与重合的线段,使与关于某条直线对称,且,为格点.(3)在图③中,画一个,使与关于某条直线对称,且,,为格点.►考向三旋转1.(2024·山东青岛·中考真题)如图,将正方形先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转,得到四边形,则点A的对应点的坐标是(

)A. B. C. D.2.(2024·湖北·中考真题)如图,点A的坐标是,将线段绕点O顺时针旋转,点A的对应点的坐标是(

)A. B. C. D.3.(2024·吉林·中考真题)如图,在平面直角坐标系中,点A的坐标为,点C的坐标为.以为边作矩形,若将矩形绕点O顺时针旋转,得到矩形,则点的坐标为(

)A. B. C. D.4.(2024·四川内江·中考真题)如图,在平面直角坐标系中,轴,垂足为点,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点也落在直线上,如此下去,……,若点的坐标为,则点的坐标为(

).A. B. C. D.5.(2025·江苏南京·中考真题)如图,在边长为4的等边三角形中,是中线,将绕点顺时针旋转得到,连接,则.6.(2023·江苏南京·中考真题)在平面内,将一个多边形先绕自身的顶点旋转一个角度,再将旋转后的多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,称这种变换为自旋转位似变换.若顺时针旋转,记作,顺,;若逆时针旋转,记作,逆,.例如:如图①,先将绕点逆时针旋转,得到,再将以点为位似中心缩小到原来的,得到,这个变换记作,逆,.(1)如图②,经过,顺,得到,用尺规作出.(保留作图痕迹)(2)如图③,经过,逆,得到,经过,顺,得到,连接,.求证:四边形是平行四边形.(3)如图④,在中,若经过(2)中的变换得到的四边形是正方形.①用尺规作出点D(保留作图痕迹,写出必要的文字说明);②直接写出的长.7.(2024·四川乐山·中考真题)在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在中,,,点D、E在边上,且,,,求的长.解:如图2,将绕点A逆时针旋转得到,连接.

由旋转的特征得,,,.∵,,∴.∵,∴,即.∴.在和中,,,,∴___①___.∴.又∵,∴在中,___②___.∵,,

∴___③___.【问题解决】上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.【知识迁移】如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.

【拓展应用】如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).

【问题再探】如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.

►考向四位似1.(2024·黑龙江绥化·中考真题)如图,矩形各顶点的坐标分别为,,,,以原点为位似中心,将这个矩形按相似比缩小,则顶点在第一象限对应点的坐标是(

A. B. C. D.2.(2024·浙江·中考真题)如图,在平面直角坐标系中,与是位似图形,位似中心为点.若点的对应点为,则点的对应点的坐标为(

)A. B. C. D.3.(2024·四川凉山·中考真题)如图,一块面积为的三角形硬纸板(记为)平行于投影面时,在点光源的照射下形成的投影是,若,则的面积是(

)A. B. C. D.考点二相似三角形►考向一相似三角形的性质与判定1.(2024·山东德州·中考真题)如图中,,,垂足为D,平分,分别交,于点F,E.若,则为(

)A. B. C. D.2.(2024·山东淄博·中考真题)如图所示,正方形与(其中边,分别在,轴的正半轴上)的公共顶点在反比例函数的图象上,直线与,轴分别相交于点,.若这两个正方形的面积之和是,且.则的值是(

)A.5 B.1 C.3 D.23.(2024·山东德州·中考真题)有一张如图所示的四边形纸片,,,为直角,要在该纸片中剪出一个面积最大的圆形纸片,则圆形纸片的半径为cm.4.(2024·山东日照·中考真题)如图,在平面直角坐标系中,点,是矩形的顶点,点分别为边上的点,将矩形沿直线折叠,使点B的对应点在边的中点处,点C的对应点在反比例函数的图象上,则5.(2024·山东淄博·中考真题)如图,在边长为10的菱形中,对角线,相交与点,点在延长线上,与相交与点.若,,则菱形的面积为.6.(2024·海南·中考真题)如图是跷跷板示意图,支柱经过的中点O,与地面垂直于点M,,当跷跷板的一端A着地时,另一端B离地面的高度为.7.(2024·江苏南通·中考真题)综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动.【特例探究】(1)如图①,②,③是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表图序角平分线的长的度数腰长两腰之和两腰之积图①1244图②12图③1__________________请补全表格中数据,并完成以下猜想.已知的角平分线,,,用含的等式写出两腰之和与两腰之积之间的数量关系:______.【变式思考】(2)已知的角平分线,,用等式写出两边之和与两边之积之间的数量关系,并证明.【拓展运用】(3)如图④,中,,点D在边上,.以点C为圆心,长为半径作弧与线段相交于点E,过点E作任意直线与边,分别交于M,N两点.请补全图形,并分析的值是否变化?8.(2024·内蒙古·中考真题)如图,内接于,直径交于点,过点作射线,使得,延长交过点的切线于点,连接.(1)求证:是的切线;(2)若.①求的长;②求的半径.9.(2024·湖北·中考真题)在矩形中,点E,F分别在边,上,将矩形沿折叠,使点A的对应点P落在边上,点B的对应点为点G,交于点H.(1)如图1,求证:;(2)如图2,当P为的中点,,时,求的长;(3)如图3,连接,当P,H分别为,的中点时,探究与的数量关系,并说明理由.►考向二相似三角形综合1.(2024·山东德州·中考真题)在中,,,点D是上一个动点(点D不与A,B重合),以点D为中心,将线段顺时针旋转得到线.(1)如图1,当时,求的度数;(2)如图2,连接,当时,的大小是否发生变化?如果不变求,的度数;如果变化,请说明理由;(3)如图3,点M在CD上,且,以点C为中心,将线CM逆时针转得到线段CN,连接EN,若,求线段EN的取值范围.2.(2024·山东淄博·中考真题)在综合与实践活动课上,小明以“圆”为主题开展研究性学习.【操作发现】小明作出了的内接等腰三角形,.并在边上任取一点(不与点,重合),连接,然后将绕点逆时针旋转得到.如图①小明发现:与的位置关系是__________,请说明理由:【实践探究】连接,与相交于点.如图②,小明又发现:当确定时,线段的长存在最大值.请求出当.时,长的最大值;【问题解决】在图②中,小明进一步发现:点分线段所成的比与点分线段所成的比始终相等.请予以证明.3.(2024·海南·中考真题)正方形中,点E是边上的动点(不与点B、C重合),,,交于点H,交延长线于点G.

(1)如图1,求证:;(2)如图2,于点P,交于点M.①求证:点P在的平分线上;②当时,猜想与的数量关系,并证明;③作于点N,连接,当时,若,求的值.4.(2024·江苏镇江·中考真题)主题学习:仅用一把无刻度的直尺作图【阅读理解】任务:如图1,点D、E分别在的边、上,,仅用一把无刻度的直尺作、的中点.

操作:如图2,连接、交于点P,连接交于点M,延长交于点N,则M、N分别为、的中点.理由:由可得及,所以,.所以,.同理,由及,可得,.所以.所以,则,,即M、N分别为、的中点.【实践操作】请仅用一把无刻度的直尺完成下列作图,要求:不写作法,保留作图痕迹.(1)如图3,,点E、F在直线上.①作线段的中点;②在①中作图的基础上,在直线上位于点F的右侧作一点P,使得;(2)小明发现,如果重复上面的过程,就可以作出长度是已知线段长度的3倍、4倍、…k倍(k为正整数)的线段.如图4,,已知点、在上,他利用上述方法作出了.点E、F在直线上,请在图4中作出线段的三等分点;【探索发现】请仅用一把无刻度的直尺完成作图,要求:不写作法,保留作图痕迹.(3)如图5,是的中位线.请在线段上作出一点Q,使得(要求用两种方法).5.(2024·江苏宿迁·中考真题)在综合实践活动课上,同学们以折叠正方形纸片展开数学探究活动【操作判断】操作一:如图①,对折正方形纸片,得到折痕,把纸片展平;操作二:如图②,在边上选一点E,沿折叠,使点A落在正方形内部,得到折痕;操作三:如图③,在边上选一点F,沿折叠,使边与边重合,得到折痕把正方形纸片展平,得图④,折痕与的交点分别为G、H.根据以上操作,得________.【探究证明】(1)如图⑤,连接,试判断的形状并证明;(2)如图⑥,连接,过点G作的垂线,分别交于点P、Q、M.求证:.【深入研究】若,请求出的值(用含k的代数式表示).6.(2024·四川资阳·中考真题)(1)【观察发现】如图1,在中,点D在边上.若,则,请证明;(2)【灵活运用】如图2,在中,,点D为边的中点,,点E在上,连接,.若,求的长;(3)【拓展延伸】如图3,在菱形中,,点E,F分别在边,上,,延长,相交于点G.若,,求的长.7.(2024·湖南长沙·中考真题)对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形;

)②内角不等于的菱形一定是“内切型单圆”四边形;

)③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有.(

)(2)如图1,已知四边形内接于,四条边长满足:.①该四边形是“______”四边形(从约定的四种类型中选一种填入);②若的平分线交于点E,的平分线交于点F,连接.求证:是的直径.(3)已知四边形是“完美型双圆”四边形,它的内切圆与分别相切于点E,F,G,H.①如图2.连接交于点P.求证:.②如图3,连接,若,,,求内切圆的半径r及的长.8.(2024·吉林长春·中考真题)如图,在中,,.点是边上的一点(点不与点、重合),作射线,在射线上取点,使,以为边作正方形,使点和点在直线同侧.(1)当点是边的中点时,求的长;(2)当时,点到直线的距离为________;(3)连结,当时,求正方形的边长;(4)若点到直线的距离是点到直线距离的3倍,则的长为________.(写出一个即可)考点三解直角三角形►考向一三角函数1.(2024·四川资阳·中考真题)第届国际数学教育大会()会标如图所示,会标中心的图案来源于我国古代数学家赵爽的“弦图”,如图所示的“弦图”是由四个全等的直角三角形(,,,)和一个小正方形拼成的大正方形.若,则(

)A. B. C. D.2.(2024·吉林长春·中考真题)2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点时,位于海平面处的雷达测得点到点的距离为千米,仰角为,则此时火箭距海平面的高度为()

A.千米 B.千米 C.千米 D.千米3.(2024·内蒙古包头·中考真题)如图,在矩形中,是边上两点,且,连接与相交于点,连接.若,,则的值为(

)A. B. C. D.4.(2024·四川眉山·中考真题)如图,在矩形中,,,点在上,把沿折叠,点恰好落在边上的点处,则的值为(

)A. B. C. D.5.(2024·云南·中考真题)在中,若,则(

)A. B. C. D.6.(2024·山东淄博·中考真题)如图所示,在矩形中,,点,分别在边,上.连接,将四边形沿翻折,点,分别落在点,处.则的值是(

)A.2 B. C. D.7.(2024·天津·中考真题)的值等于(

)A. B. C. D.►考向二解直角三角形的应用1.(2024·山东日照·中考真题)潮汐塔是万平口区域内的标志性建筑,在其塔顶可俯视景区全貌.某数学兴趣小组用无人机测量潮汐塔的高度,测量方案如图所示:无人机在距水平地面的点M处测得潮汐塔顶端A的俯角为,再将无人机沿水平方向飞行到达点N,测得潮汐塔底端B的俯角为(点在同一平面内),则潮汐塔的高度为(

)(结果精确到.参考数据:)A. B. C. D.2.(2024·四川雅安·中考真题)在数学课外实践活动中,某小组测量一栋楼房的高度(如图),他们在A处仰望楼顶,测得仰角为,再往楼的方向前进50米至B处,测得仰角为,那么这栋楼的高度为(人的身高忽略不计)(

)A.米 B.25米 C.米 D.50米3.(2024·广东深圳·中考真题)如图,为了测量某电子厂的高度,小明用高的测量仪测得的仰角为,小军在小明的前面处用高的测量仪测得的仰角为,则电子厂的高度为(

)(参考数据:,,)A. B. C. D.4.(2024·四川德阳·中考真题)某校学生开展综合实践活动,测量一建筑物的高度,在建筑物旁边有一高度为10米的小楼房,小李同学在小楼房楼底处测得处的仰角为,在小楼房楼顶处测得处的仰角为.(在同一平面内,在同一水平面上),则建筑物的高为(

)米A.20 B.15 C.12 D.5.(2024·山西·中考真题)研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动.同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的扫描仪采集纪念碑的相关数据.数据采集:如图,点是纪念碑顶部一点,的长表示点到水平地面的距离.航模从纪念碑前水平地面的点处竖直上升,飞行至距离地面20米的点处时,测得点的仰角;然后沿方向继续飞行,飞行方向与水平线的夹角,当到达点正上方的点处时,测得米;数据应用:已知图中各点均在同一竖直平面内,,,三点在同一直线上.请根据上述数据,计算纪念碑顶部点到地面的距离的长(结果精确到1米.参考数据:,,,,,.6.(2024·西藏·中考真题)在数学综合实践活动中,次仁和格桑自主设计了“测量家附近的一座小山高度”的探究作业.如图,次仁在A处测得山顶C的仰角为;格桑在B处测得山顶C的仰角为.已知两人所处位置的水平距离米,A处距地面的垂直高度米,B处距地面的垂直高度米,点M,F,N在同一条直线上,求小山的高度.(结果保留根号)

7.(2024·海南·中考真题)木兰灯塔是亚洲最高、世界第二高的航标灯塔,位于海南岛的最北端,是海南岛东北部最重要的航标.某天,一艘渔船自西向东(沿方向)以每小时10海里的速度在琼州海峡航行,如图所示.

航行记录记录一:上午8时,渔船到达木兰灯塔P北偏西方向上的A处.记录二:上午8时30分,渔船到达木兰灯塔P北偏西方向上的B处.记录三:根据气象观测,当天凌晨4时到上午9时,受天文大潮和天气影响,琼州海峡C点周围5海里内,会出现异常海况,点C位于木兰灯塔P北偏东方向.请你根据以上信息解决下列问题:(1)填空:________,________,________海里;(2)若该渔船不改变航线与速度,是否会进入“海况异常”区,请计算说明.(参考数据:)8.(2024·内蒙古·中考真题)实验是培养学生创新能力的重要途径.如图是小亮同学安装的化学实验装置,安装要求为试管口略向下倾斜,铁夹应固定在距试管口的三分之一处.现将左侧的实验装置图抽象成右侧示意图,已知试管,试管倾斜角为.(1)求试管口B与铁杆的水平距离的长度;(结果用含非特殊角的三角函数表示)(2)实验时,导气管紧靠水槽壁,延长交的延长线于点F,且于点N(点C,D,N,F在一条直线上),经测得:,求线段的长度.(结果用含非特殊角的三角函数表示)9.(2024·湖北·中考真题)某数学兴趣小组在校园内开展综合与实践活动,记录如下:活动项目测量校园中树的高度活动方案“测角仪”方案“平面镜”方案方案示意图实施过程1.选取与树底B位于同一水平地面的D处;2.测量D,B两点间的距离;3.站在D处,用测角仪测量从眼睛C处看树顶A的仰角;4.测量C到地面的高度.1.选取与树底B位于同一水平地面的E处;2.测量E,B两点间的距离;3.在E处水平放置一个平面镜,沿射线方向后退至D处,眼睛C刚好从镜中看到树顶A;4.测量E,D两点间的距离;5.测量C到地面的高度.测量数据1.;2.;3..1.;2.;3..备注1.图上所有点均在同一平面内;2.均与地面垂直;3.参考数据:.1.图上所有点均在同一平面内;2.均与地面垂直;3.把平面镜看作一个点,并由物理学知识可得.请你从以上两种方案中任选一种,计算树的高度.一、单选题1.(2024·安徽宿州·模拟预测)如图,实线部分是一个正方体展开图,点A,B,C,D,E均在的边上,则(

)A. B. C. D.2.(2024·安徽宿州·模拟预测)的相反数是(

)A. B. C. D.3.(2024·安徽合肥·三模)如图,在四边形中,,以为直角边作等腰直角,点E正好落在边上,则下列结论错误的是(

)A. B.C. D.4.(2024·安徽宿州·模拟预测)如图,在中,,D是上一点,于E,且,则的长为(

)A.2 B. C. D.5.(2024·安徽亳州·模拟预测)如图,是的中线,点F在上,延长交于点D,若,则(

)A. B. C. D.6.(2024·安徽亳州·模拟预测)若,则锐角的度数应是(

)A. B. C. D.7.(2024·安徽亳州·模拟预测)在中,,,,则的值为(

)A.10 B.8 C.6 D.4二、填空题8.(2024·安徽宿州·模拟预测)如图,在矩形中,为对角线,点F在上,连接交于点E,且;(1)则;(2)若为等腰直角三角形,,则.9.(2024·安徽宿州·模拟预测)已知,那么.10.(22-23九年级上·山东潍坊·阶段练习)在中,若,则.三、解答题11.(2024·安徽宿州·模拟预测)如图,在平面直角坐标系中的顶点坐标分别为.(1)画出关于y轴对称的(点A,B,C的对应点分别是点.);(2)以点O为位似中心在第四象限内画出的位似图形,使得与的相似比为.12.(2024·安徽·一模)如图,在平面直角坐标系中,已知的三个顶点分别是,,.(1)请画出将绕点C逆时针旋转后得到的;(2)在(2)的条件下,求点A旋转到点所经过的路线长(结果保留π).13.(2024·安徽·模拟预测)已知,四边形为菱形,对角线,交于点,为边上一点,为对角线上一点,且,.(1)如图,当时,连接并延长交于点;求证:;求的度数;(2)如图,求证:.14.(2024·安徽·模拟预测)如图所示,图中的小方格都是边长为的正方形,与是以点为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心,并直接写出与的相似比;(2)以位似中心为旋转中心,把按顺时针方向旋转得到,画出.15.(2024·安徽六安·模拟预测)如图,在正方形中,点是对角线上一点,连接,过点作交边于点.(1)求的度数;(2)如图,连接与交于点,与交于点,设与交于点.①若,求证:;②如图,若正方形的边长为,点是的中点,试求的长.16.(2024·安徽·模拟预测)某超市自动扶梯路线如图所示,一楼扶梯段坡角为,中转平台,二楼扶梯段坡角为,已知,,,求水平距离的长.(结果精确到,参考数据:,,,)17.(2024·安徽·模拟预测)某海域有两个海拔均为米的海岛A和海岛,一勘测飞机在距离海平面垂直高度为米的空中飞行,飞行到点处时测得正前方一海岛顶端A的俯角是,然后沿平行与的方向水平飞行米到达点处,在处测得正前方另一海岛顶端的俯角是,求两海岛间的距离.18.(2024·安徽·三模)如图1是某地红色广场标牌,将其红色主体部分拍象为图2,,,,米,米,求该标牌的高(精确到米,参考数据:,,,

专题17图形的变换课标要求考点考向能够在格点中进行图形的平移、旋转、对称等变换作图。明确变换的性质和规律,准确找出图形变换后对应点的位置,进而作出变换后的图形。学生不仅要能作出图形,还要理解作图的原理和依据,能够运用几何知识对所作图形的合理性进行解释和证明,将作图与几何推理、计算等相结合,解决相关问题。了解比例的基本性质、了解相似三角形的判定定理:了解相似三角形判定定理的证明。了解相似三角形的性质定理、了解图形的位似,知道利用位似可以将一个图形放大或缩小。知道特殊角的三角函数值。会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角。在平面上,能用方位角和距离刻画两个物体的相对位置。能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。格点作图考向一平移考向二对称考向三旋转考向四位似相似三角形考向一相似三角形的性质与判定考向二相似三角形综合解直角三角形考向一三角函数考向二解直角三角形的应用考点一格点作图►考向一平移1.(2024·山东青岛·中考真题)如图,将正方形先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转,得到四边形,则点A的对应点的坐标是(

)A. B. C. D.【答案】A【分析】本题主要考查了坐标与图形变化—旋转和平移,全等三角形的性质与判定,先根据题意得到平移方式为向右平移3个单位长度,则可得平移后点A的对应点坐标为;如图所示,设绕原点O顺时针旋转90度后的对应点为F,分别过E、F作x轴的垂线,垂足分别为G、H,证明,得到,则,即点A的对应点的坐标是.【详解】解:由题意得,平移前,∵将正方形先向右平移,使点B与原点O重合,∴平移方式为向右平移3个单位长度,∴平移后点A的对应点坐标为,如图所示,设绕原点O顺时针旋转90度后的对应点为F,分别过E、F作x轴的垂线,垂足分别为G、H,∴,由旋转的性质可得,∴,∴,∴,∴,∵,∴,∴,∴点A的对应点的坐标是,故选:A.2.(2024·海南·中考真题)平面直角坐标系中,将点A向右平移3个单位长度得到点,则点A的坐标是(

)A. B. C. D.【答案】C【分析】本题考查了坐标与图形的平移变化.根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.据此求解即可.【详解】解:∵将点A向右平移3个单位长度得到点,∴点A的坐标是,即.故选:C.3.(2024·四川资阳·中考真题)在平面直角坐标系中,将点沿y轴向上平移1个单位后,得到的点的坐标为(

)A. B. C. D.【答案】B【分析】本题考查了坐标系中点的平移规律.根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【详解】点沿y轴向上平移1个单位后,得到的点的坐标为故选:B.4.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为(

)A.或 B.或 C.或 D.或【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照的反向运动理解去分类讨论:①先向右1个单位,不符合题意;②先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,那么最后一次若向右平移则为,若向左平移则为.【详解】解:由点可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q按上述规则连续平移16次后,到达点,则按照“和点”反向运动16次求点Q坐标理解,可以分为两种情况:①先向右1个单位得到,此时横、纵坐标之和除以3所得的余数为0,应该是向右平移1个单位得到,故矛盾,不成立;②先向下1个单位得到,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到,故符合题意,那么点先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,即,那么最后一次若向右平移则为,若向左平移则为,故选:D.5.(2024·山东淄博·中考真题)如图,已知,两点的坐标分别为,,将线段平移得到线段.若点的对应点是,则点的对应点的坐标是.【答案】【分析】此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.根据平移的性质,结合已知点,的坐标,知点的横坐标加上了1,纵坐标加1,则的坐标的变化规律与点相同,即可得到答案.【详解】解:平移后对应点C的坐标为,点的横坐标加上了4,纵坐标加1,,点坐标为,即,故答案为:.6.(2024·江苏无锡·中考真题)在探究“反比例函数的图象与性质”时,小明先将直角边长为5个单位长度的等腰直角三角板摆放在平面直角坐标系中,使其两条直角边分别落在轴负半轴、轴正半轴上(如图所示),然后将三角板向右平移个单位长度,再向下平移个单位长度后,小明发现两点恰好都落在函数的图象上,则的值为.【答案】2或3【分析】本题考查了反比例函数,平移,解一元二次方程.先得出点A和点B的坐标,再得出平移后点A和点B对应点的坐标,根据平移后两点恰好都落在函数的图象上,列出方程求解即可.【详解】解:∵,∴,设平移后点A、B的对应点分别为,∴,∵两点恰好都落在函数的图象上,∴把代入得:,解得:或.故答案为:2或3.►考向二对称1.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于y轴对称的,并写出点的坐标;【答案】(1)作图见解析,【分析】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据题意画出即可;关于y轴对称点的坐标横坐标互为相反数,纵坐标不变;【详解】(1)解:如图,为所求;点的坐标为,2.(2023·黑龙江·中考真题)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,.

(1)将向上平移4个单位,再向右平移1个单位,得到,请画出.【答案】(1)见解析【分析】(1)根据平移的性质得出对应点的位置进而画出图形;【详解】(1)解:如图所示,即为所求;

3.(2023·山东枣庄·中考真题)(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.

(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.

【答案】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是轴对称图形,且面积为4的图形.【详解】解:(1)观察发现四个图形都是轴对称图形,且面积相等;故答案为:观察发现四个图形都是轴对称图形,且面积相等;(2)如图:

【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.4.(2022·吉林·中考真题)图①,图②均是的正方形网格,每个小正方形的顶点称为格点.其中点,,均在格点上.请在给定的网格中按要求画四边形.(1)在图①中,找一格点,使以点,,,为顶点的四边形是轴对称图形;(2)在图②中,找一格点,使以点,,,为顶点的四边形是中心对称图形.【答案】(1)图见解析(2)图见解析【分析】(1)以所在直线为对称轴,找出点的对称点即为点,再顺次连接点即可得;(2)根据点平移至点的方式,将点进行平移即可得点,再顺次连接点即可得.【详解】(1)解:如图①,四边形是轴对称图形.(2)解:先将点向左平移2格,再向上平移1个可得到点,则将点按照同样的平移方式可得到点,如图②,平行四边形是中心对称图形.【点睛】本题考查了轴对称图形与中心对称图形、平移作图,熟练掌握轴对称图形与中心对称图形的概念是解题关键.5.(2020·吉林·中考真题)如图①、图②、图③都是的正方形网格,每个小正方形的顶点称为格点.,,均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与重合的线段,使与关于某条直线对称,且,为格点.(2)在图②中,画一条不与重合的线段,使与关于某条直线对称,且,为格点.(3)在图③中,画一个,使与关于某条直线对称,且,,为格点.【答案】(1)图见解析;(2)图见解析;(3)图见解析.【分析】(1)先画出一条的正方形网格的对称轴,根据对称性即可在图①中,描出点AB的对称点MN,它们一定在格点上,再连接即可.(2)同(1)方法可解;(3)同(1)方法可解;【详解】解:(1)如图①,的正方形网格的对称轴l,描出点AB关于直线l的对称点MN,连接即为所求;(2)如图②,同理(1)可得,即为所求;(3)如图③,同理(1)可得,即为所求.【点睛】本题考查了作图轴对称变换,解决本题的关键是找到图形对称轴的位置.►考向三旋转1.(2024·山东青岛·中考真题)如图,将正方形先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转,得到四边形,则点A的对应点的坐标是(

)A. B. C. D.【答案】A【分析】本题主要考查了坐标与图形变化—旋转和平移,全等三角形的性质与判定,先根据题意得到平移方式为向右平移3个单位长度,则可得平移后点A的对应点坐标为;如图所示,设绕原点O顺时针旋转90度后的对应点为F,分别过E、F作x轴的垂线,垂足分别为G、H,证明,得到,则,即点A的对应点的坐标是.【详解】解:由题意得,平移前,∵将正方形先向右平移,使点B与原点O重合,∴平移方式为向右平移3个单位长度,∴平移后点A的对应点坐标为,如图所示,设绕原点O顺时针旋转90度后的对应点为F,分别过E、F作x轴的垂线,垂足分别为G、H,∴,由旋转的性质可得,∴,∴,∴,∴,∵,∴,∴,∴点A的对应点的坐标是,故选:A.2.(2024·湖北·中考真题)如图,点A的坐标是,将线段绕点O顺时针旋转,点A的对应点的坐标是(

)A. B. C. D.【答案】B【分析】本题主要考查了坐标与图形变化旋转,全等三角形的判定和性质,熟知图形旋转的性质是解题的关键.根据题意画出旋转后的图形,再结合全等三角形的判定与性质即可解决问题.【详解】解:如图所示,分别过点和点作轴的垂线,垂足分别为和,由旋转可知,,,,.在和中,,,,.点的坐标为,,,点的坐标为.故选:B.3.(2024·吉林·中考真题)如图,在平面直角坐标系中,点A的坐标为,点C的坐标为.以为边作矩形,若将矩形绕点O顺时针旋转,得到矩形,则点的坐标为(

)A. B. C. D.【答案】C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到,再由矩形的性质可得,由旋转的性质可得,,据此可得答案.【详解】解:∵点A的坐标为,点C的坐标为,∴,∵四边形是矩形,∴,∵将矩形绕点O顺时针旋转,得到矩形,∴,,∴轴,∴点的坐标为,故选:C.4.(2024·四川内江·中考真题)如图,在平面直角坐标系中,轴,垂足为点,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点也落在直线上,如此下去,……,若点的坐标为,则点的坐标为(

).A. B. C. D.【答案】C【分析】本题考查了平面直角坐标系、一次函数、旋转的性质、勾股定理等知识点.找出点的坐标规律以及旋转过程中线段长度的关系是解题的关键.通过求出点的坐标,、、的长度,再根据旋转的特点逐步推导出后续点的位置和坐标,然后结合图形求解即可.【详解】轴,点的坐标为,,则点的纵坐标为3,代入,得:,则点的坐标为.,,,由旋转可知,,,,,,,.设点的坐标为,则,解得或(舍去),则,点的坐标为.故选C.5.(2025·江苏南京·中考真题)如图,在边长为4的等边三角形中,是中线,将绕点顺时针旋转得到,连接,则.【答案】【分析】过点E作交延长线于点H,由等边三角形的性质得到,继而由三线合一得到,,由勾股定理得到,旋转得到,,则,继而,即可求解面积.【详解】解:过点E作交延长线于点H,∵为等边三角形∴,∵是中线,∴,,∴由勾股定理得:,由旋转得:,,∴,∵,∴,∴,故答案为:.【点睛】本题考查了等边三角形的性质,勾股定理,角直角三角形的性质,旋转的性质,正确构造辅助线是解题的关键.6.(2023·江苏南京·中考真题)在平面内,将一个多边形先绕自身的顶点旋转一个角度,再将旋转后的多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,称这种变换为自旋转位似变换.若顺时针旋转,记作,顺,;若逆时针旋转,记作,逆,.例如:如图①,先将绕点逆时针旋转,得到,再将以点为位似中心缩小到原来的,得到,这个变换记作,逆,.(1)如图②,经过,顺,得到,用尺规作出.(保留作图痕迹)(2)如图③,经过,逆,得到,经过,顺,得到,连接,.求证:四边形是平行四边形.(3)如图④,在中,若经过(2)中的变换得到的四边形是正方形.①用尺规作出点D(保留作图痕迹,写出必要的文字说明);②直接写出的长.【答案】(1)见解析(2)见解析(3)①见解析;②【分析】(1)旋转,可作等边三角形,,从而得出点和点对应点,,进而作出图形;(2)根据和位似,与位似得出,,,进而推出,从而,进而得出,同理可得:,从而推出四边形是平行四边形;(3)要使是正方形,应使,,从而得出,从而得出,从而,于是作等边,保证,作直径,保证,这样得出作法.【详解】(1)解:如图1,1.以为圆心,为半径画弧,以为圆心,为半径画弧,两弧在的上方交于点,分别以,为圆心,以为半径画弧,两弧交于点,2.延长至,使,延长至,使,连接,则就是求作的三角形;(2)证明:和位似,与位似,,,,,,,,,同理可得:,四边形是平行四边形;(3)解:如图2,1.以为边在上方作等边三角形,2.作等边三角形的外接圆,作直径,连接,3.作,,延长,交于,连接,,则四边形是正方形,证明:由上知:,,,,,,,要使是正方形,应使,,,,,,,作等边,保证,作直径,保证,这样得出作法;,,,.【点睛】本题考查了相似三角形的判定和性质,圆周角定理,确定圆的条件,尺规作图等知识,解决问题的关键是较强的分析能力.7.(2024·四川乐山·中考真题)在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在中,,,点D、E在边上,且,,,求的长.解:如图2,将绕点A逆时针旋转得到,连接.

由旋转的特征得,,,.∵,,∴.∵,∴,即.∴.在和中,,,,∴___①___.∴.又∵,∴在中,___②___.∵,,

∴___③___.【问题解决】上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.【知识迁移】如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.

【拓展应用】如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).

【问题再探】如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.

【答案】【问题解决】①;②;③5;【知识迁移】,见解析;【拓展应用】;【问题再探】【分析】【问题解决】根据题中思路解答即可;【知识迁移】如图,将绕点逆时针旋转,得到.过点作交边于点,连接.由旋转的特征得.结合题意得.证明,得出.根据正方形性质得出.结合,得出.证明,得出.证明.得出.在中,根据勾股定理即可求解;【拓展应用】如图所示,设直线交延长线于点,交延长线于点,将绕着点顺时针旋转,得到,连接.则.则,,根据,证明,得出,过点H作交于点O,过点H作交于点M,则四边形为矩形.得出,证明是等腰直角三角形,得出,,在中,根据勾股定理即可证明;【问题再探】如图,将绕点逆时针旋转,得到,连接.过点作,垂足为点,过点作,垂足为.过点作,过点作交于点、交于点.由旋转的特征得.根据,得出,证明,得出,根据勾股定理算出,根据,表示出,证明,根据相似三角形的性质表示出,,同理可得.,证明四边形为矩形.得出,,在中,根据勾股定理即可求解;【详解】【问题解决】解:如图2,将绕点A逆时针旋转得到,连接.

由旋转的特征得,,,.∵,,∴.∵,∴,即.∴.在和中,,,,∴①.∴.又∵,∴在中,②.∵,,∴③.【知识迁移】.证明:如图,将绕点逆时针旋转,得到.过点作交边于点,连接.

由旋转的特征得.由题意得,∴.在和中,,∴.∴.又∵为正方形的对角线,∴.∵,∴.在和中,,∴,∴.在和中,,∴.∴.在中,,∴.【拓展应用】.证明:如图所示,设直线交延长线于点,交延长线于点,

将绕着点顺时针旋转,得到,连接.则.则,,,,在和中,,∴,过点H作交于点O,过点H作交于点M,则四边形为矩形.∴,,,是等腰直角三角形,,,,,,在中,,,∴,即,又∴,∴,即,【问题再探】如图,将绕点逆时针旋转,得到,连接.过点作,垂足为点,过点作,垂足为.过点作,过点作交于点、交于点.

由旋转的特征得.,,,即,在和中,,,,,,又,,,,,,即,,同理可得.,,,又∵,∴四边形为矩形.,,在中,.,解得.【点睛】本题是四边形的综合题,考查的是旋转变换的性质、矩形的性质和判定、正方形的性质和判定、勾股定理、等腰直角三角形的性质和判定、全等三角形的判定和性质,相似三角形的判定和性质,灵活运用旋转变换作图,掌握以上知识点是解题的关键.►考向四位似1.(2024·黑龙江绥化·中考真题)如图,矩形各顶点的坐标分别为,,,,以原点为位似中心,将这个矩形按相似比缩小,则顶点在第一象限对应点的坐标是(

A. B. C. D.【答案】D【分析】本题考查了位似图形的性质,根据题意横纵的坐标乘以,即可求解.【详解】解:依题意,,以原点为位似中心,将这个矩形按相似比缩小,则顶点在第一象限对应点的坐标是故选:D.2.(2024·浙江·中考真题)如图,在平面直角坐标系中,与是位似图形,位似中心为点.若点的对应点为,则点的对应点的坐标为(

)A. B. C. D.【答案】A【分析】本题考查了位似变换,根据点的坐标可得到位似比,再根据位似比即可求解,掌握位似变换的性质是解题的关键.【详解】解:∵与是位似图形,点的对应点为,∴与的位似比为,∴点的对应点的坐标为,即,故选:.3.(2024·四川凉山·中考真题)如图,一块面积为的三角形硬纸板(记为)平行于投影面时,在点光源的照射下形成的投影是,若,则的面积是(

)A. B. C. D.【答案】D【详解】解:∵一块面积为的三角形硬纸板(记为)平行于投影面时,在点光源的照射下形成的投影是,,∴,∴位似图形由三角形硬纸板与其灯光照射下的中心投影组成,相似比为,∵三角形硬纸板的面积为,∴,∴的面积为.故选:D.考点二相似三角形►考向一相似三角形的性质与判定1.(2024·山东德州·中考真题)如图中,,,垂足为D,平分,分别交,于点F,E.若,则为(

)A. B. C. D.【答案】A【分析】本题考查相似三角形的判定与性质、角平分线的性质、勾股定理、三角形的面积等知识,熟练掌握相似三角形的判定与性质以及角平分线的性质是解答的关键.设,,利用勾股定理求得,,再证明得到,再利用角平分线的性质和三角形的面积得到即可求解.【详解】解:∵,设,,∵,∴,,∵,∴,,∴,∴,∴,∵平分,∴点F到、的距离相等,又点A到、的距离相等,∴,即,故选:A.2.(2024·山东淄博·中考真题)如图所示,正方形与(其中边,分别在,轴的正半轴上)的公共顶点在反比例函数的图象上,直线与,轴分别相交于点,.若这两个正方形的面积之和是,且.则的值是(

)A.5 B.1 C.3 D.2【答案】C【分析】本题主要考查了反比例函数的图形与性质,反比例函数的系数k的几何意义,反比例函数图象上点的坐标的特征,利用线段的长度表示出点的坐标是解题的关键.设,利用正方形的性质和相似三角形的判定与性质得到a,b的关系式,再利用求得a,b值,则点A坐标可求,最后利用待定系数法解答即可得出结论.【详解】解:设,由题意得:.∵正方形与(其中边分别在x,y轴的正半轴上)的公共顶点A在反比例函数的图象上,∴,∴,∴,∴,∵,∴,∴.∵,∴,∴,∴,∴,∴,∵,∴.∴.∴,∴.故选:C3.(2024·山东德州·中考真题)有一张如图所示的四边形纸片,,,为直角,要在该纸片中剪出一个面积最大的圆形纸片,则圆形纸片的半径为cm.【答案】【分析】连接,作的平分线交于点,作于,如图求得,则,,所以平分和,加上平分,根据角平分线性质得到点到四边形的各边的距离相等,则得到是四边形的内切圆,它是所求的面积最大的圆形纸片,其半径为,接着证明为等腰直角三角形得到,设,则,,然后证明,利用相似比可计算出.【详解】解:连接,作的平分线,交于点O,作于,在和中,,∴,∴,平分和,平分,点到四边形的各边的距离相等,∴是四边形的内切圆,它是所求的面积最大的圆形纸片,其半径为,,,∴为等腰直角三角形,,设,则,,∵,,∴,,即,.即的半径为,∴圆形纸片的半径为.故答案为:【点睛】本题考查四边形的内切圆,角平分线的性质,相似三角形的判定及性质,证明该四边形的内切圆是所求的面积最大的圆是解题的关键.4.(2024·山东日照·中考真题)如图,在平面直角坐标系中,点,是矩形的顶点,点分别为边上的点,将矩形沿直线折叠,使点B的对应点在边的中点处,点C的对应点在反比例函数的图象上,则【答案】【分析】设交与点E,过点作轴于点H.利用矩形的性质、折叠的性质和勾股定理等可求出,,,,,,证明,利用相似三角形的性质可求出,,证明,利用相似三角形的性质可求出,,则可出求的坐标,然后利用待定系数法求解即可.【详解】解:如图,设交与点E,过点作轴于点H.四边形是矩形,,,,,,点是的中点,.在中,,,,矩形沿直线折叠,,,,,,,即,解得,,,,,.,.又,,,即,解得,,,点的坐标为,.故答案为:.【点睛】本题考查了矩形与折叠,相似三角形的判定与性质,勾股定理,反比例函数等知识,明确题意,添加合适辅助线,构造相似三角形求解是解题的关键.5.(2024·山东淄博·中考真题)如图,在边长为10的菱形中,对角线,相交与点,点在延长线上,与相交与点.若,,则菱形的面积为.【答案】96【分析】此题重点考查菱形的性质、相似三角形的判定与性质、勾股定理等知识.作交于点H,则,求得,再证明,求得,再证明,则,利用勾股定理求得的长,再利用菱形的面积公式求解即可得到问题的答案.【详解】解:作交于点H,则,∵四边形是边长为10的菱形,对角线相交于点O,∴,,,,∴,,∴,∵,,∴,∴,∴,∵四边形是菱形,且,∴,∴,∴,∴,∴,,∴,故答案为:96.6.(2024·海南·中考真题)如图是跷跷板示意图,支柱经过的中点O,与地面垂直于点M,,当跷跷板的一端A着地时,另一端B离地面的高度为.【答案】80【分析】本题考查的是相似三角形的判定和性质.过点B作交的延长线于N,求得,得到,根据相似三角形的性质解答即可.【详解】解:过点B作交的延长线于N,

∵,∴,∴,∴,∵,,∴,∴,∴另一端B离地面的高度为.故答案为:80.7.(2024·江苏南通·中考真题)综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动.【特例探究】(1)如图①,②,③是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表图序角平分线的长的度数腰长两腰之和两腰之积图①1244图②12图③1__________________请补全表格中数据,并完成以下猜想.已知的角平分线,,,用含的等式写出两腰之和与两腰之积之间的数量关系:______.【变式思考】(2)已知的角平分线,,用等式写出两边之和与两边之积之间的数量关系,并证明.【拓展运用】(3)如图④,中,,点D在边上,.以点C为圆心,长为半径作弧与线段相交于点E,过点E作任意直线与边,分别交于M,N两点.请补全图形,并分析的值是否变化?【答案】(1)见解析;,(2),证明见解析;(3)是定值【分析】(1)根据特殊角的三角函数值分别计算,再填表即可;再由可得结论;(2)如图,延长至使,连接,过作于,延长交于,证明为等边三角形,,,设,,利用相似三角形的性质求解,再进一步可得;(3)根据题目要求画图,设,运用等腰三角形性质和三角形内角和定理可求得,过点作于,于,过点作于,利用,即可求得答案.【详解】解:(1)∵,是的角平分线,,∴,∴;∴,;图序角平分线的长的度数腰长两腰之和两腰之积图①1244图②12图③1如图,由(1)可得:,∴,∴,,∴;(2)猜想:,理由如下:如图,延长至使,连接,过作于,延长交于,∵,平分,∴为等边三角形,,,设,,∴,,而,∴,∵,,∴,∴,,∴,,∵,∴,即,解得:,∴;,∴;(3)补全图形如图所示:设,,,,,,,,,,解得:,,如图,过点作于,于,过点作于,,,,,,,在中,,,,,,,由是确定的,由作图可得为定长,而和为定值,为定值,即为定值.【点睛】本题属于实际探究题,考查了类比方法的应用,等腰三角形的性质,相似三角形的判定与性质,勾股定理的应用,锐角三角函数的灵活应用,作出合适的辅助线是解本题的关键.8.(2024·内蒙古·中考真题)如图,内接于,直径交于点,过点作射线,使得,延长交过点的切线于点,连接.(1)求证:是的切线;(2)若.①求的长;②求的半径.【答案】(1)证明见解析;(2)①;②.【分析】()连接,则,可得,由可得,进而由等腰三角形的性质可得,得到,即可求证;()①证明得到,据此即可求解;②由①可得,进而得,,利用勾股定理得,再证明,得到,即可得,求出即可求解.【详解】(1)证明:连接,则,∵,∴,∵是的直径,∴,∴,∴,∵,∴,∴,即,∴,又∵为的半径,∴是的切线;(2)解:①∵是的切线,∴,∴,∴,∵是的直径,∴,∴,∴,∵,∴,即,又∵,∴,∴,∵,∴,∴,∴;②∵,,∴,∵,∴,∴,,∵,∴,∵,,∴,∴,即,∴,∴,∴的半径为.【点睛】本题考查了圆周角定理,切线的性质和判定,余角性质,等腰三角形的性质,相似三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.9.(2024·湖北·中考真题)在矩形中,点E,F分别在边,上,将矩形沿折叠,使点A的对应点P落在边上,点B的对应点为点G,交于点H.(1)如图1,求证:;(2)如图2,当P为的中点,,时,求的长;(3)如图3,连接,当P,H分别为,的中点时,探究与的数量关系,并说明理由.【答案】(1)见解析(2)(3),见解析【分析】(1)证明对应角相等,即可得到;(2)根据,求得的长度,从而得出长度;(3)延长,交于一点,连接,先证明,得到相等的边,再根据,得出大小关系.【详解】(1)证明:如图,四边形是矩形,,,,分别在,上,将四边形沿翻折,使的对称点落在上,,,,;(2)解:四边形是矩形,,,,为中点,,设,,在中,,即,解得,,,,,即,,,.(3)解:如图,延长,交于一点,连接,,分别在,上,将四边形沿翻折,使的对称点落在上,,直线,,,,,是等腰三角形,,为中点,设,,为中点,,,,,,,,,在中,,,,在中,,,,,,,,即.【点睛】本题考查了矩形与折叠、相似三角形的判定与性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握以上基础知识是解题关键.►考向二相似三角形综合1.(2024·山东德州·中考真题)在中,,,点D是上一个动点(点D不与A,B重合),以点D为中心,将线段顺时针旋转得到线.(1)如图1,当时,求的度数;(2)如图2,连接,当时,的大小是否发生变化?如果不变求,的度数;如果变化,请说明理由;(3)如图3,点M在CD上,且,以点C为中心,将线CM逆时针转得到线段CN,连接EN,若,求线段EN的取值范围.【答案】(1)(2)的大小不发生变化,,理由见解析(3)【分析】(1)由旋转的性质得,由等边对等角和三角形内角和定理得到,由三角形外角的性质得,进而可求出的度数;(2)连接交于点O,证明得,再证明即可求出的度数;(3)过点C作于H,求出,则;由旋转的性质得,,,设,则;如图所示,过点D作于G,则可得到,,由勾股定理得;证明,在中,由勾股定理得;再求出,即可得到.【详解】(1)解:由旋转的性质得.∵,,∴.∵,∴,∴;(2)解:的大小不发生变化,,理由如下:连接交于点O,由旋转的性质得,,∴,∴,又∵,∴,∴∴,∵,∴,∴;(3)解:如图所示,过点C作于H,∵,,∴,∵,∴;由旋转的性质得,,,设,∵,∴,如图所示,过点D作于G,∵,,∴,∵,∴,,在中,由勾股定理得,∴,∵,∴,在中,由勾股定理得,∴或(舍去);∵点D是上一个动点(点D不与A,B重合),∴,即,∴,∴.【点睛】本题主要考查了相似三角形的性质与判定,旋转的性质,勾股定理,含30度角的直角三角形的性质,等边对等角等,正确作出辅助线构造相似三角形和直角三角形是解题的关键.2.(2024·山东淄博·中考真题)在综合与实践活动课上,小明以“圆”为主题开展研究性学习.【操作发现】小明作出了的内接等腰三角形,.并在边上任取一点(不与点,重合),连接,然后将绕点逆时针旋转得到.如图①小明发现:与的位置关系是__________,请说明理由:【实践探究】连接,与相交于点.如图②,小明又发现:当确定时,线段的长存在最大值.请求出当.时,长的最大值;【问题解决】在图②中,小明进一步发现:点分线段所成的比与点分线段所成的比始终相等.请予以证明.【答案】操作发现:与相切;实践探究:;问题解决:见解析【分析】操作发现:连接并延长交于点M,连接,根据直径所对圆周角为直角得到,根据旋转的性质得到,由圆周角定理推出,等量代换得到,利用直角三角形的性质即可证明,即可得出结论;实践探究:证明,得到,结合三角形外角的性质得到,易证,得到,设,则,得到,利用二次函是的性质即可求解;问题解决:过点E作交于点N,由旋转的性质知:,证明,推出,由旋转的性质得:,得到,根据,易证,得到,即可证明结论.【详解】操作发现:解:连接并延长交于点M,连接,是直径,,,由旋转的性质得,,,,是的半径,与相切;实践探究:解:由旋转的性质得:,即,,,,,,,,,设,则,,,,当时,有最大值为;问题解决:证明:过点E作交于点N,由旋转的性质知:,,,,,由旋转的性质得:,,,,,,,.【点睛】本题考查圆周角定理,切线的证明,旋转的性质,三角形相似的判定与性质,二次函数最值的应用,正确作出辅助线,构造三角形相似是解题的关键.3.(2024·海南·中考真题)正方形中,点E是边上的动点(不与点B、C重合),,,交于点H,交延长线于点G.

(1)如图1,求证:;(2)如图2,于点P,交于点M.①求证:点P在的平分线上;②当时,猜想与的数量关系,并证明;③作于点N,连接,当时,若,求的值.【答案】(1)见解析;(2)①见解析;②;③.【分析】(1)利用即可证明;(2)①证明是等腰直角三角形,再推出四点共圆,求得,据此即可证明结论成立;②由①得点P在的平分线即正方形的对角线上,证明,根据相似三角形的性质即可求解;③证明四边形是平行四边形,推出和都是等腰直角三角形,设,则,,由,得到,据此求解即可.【详解】(1)证明:∵正方形,∴,∵,∴,∵,,∴;(2)①证明:连接,

由(1)得,∴,∴,即,∵,∴是等腰直角三角形,∵,∴,,∵,∴四点共圆,∴,∵,,∴点P在的平分线上;②,理由如下:由①得点P在的平分线即正方形的对角线上,

∵正方形,∴,∴,∴,∵,即,∴,∴;③由①得点P在的平分线即正方形的对角线上,

∴,同理四点共圆,则,∵,∴,∴,∵,∴四边形是平行四边形,设平行四边形的对角线的交点为,且,∵是等腰直角三角形,∴和都是等腰直角三角形,设,则,,∵,,∴,∴,则,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴.【点睛】本题考查了正方形的性质,勾股定理,三角形全等的判定和性质,三角形相似的判定和性质,四点共圆,熟练掌握三角形全等的判定和性质,相似三角形的判定和性质,勾股定理是解题的关键.4.(2024·江苏镇江·中考真题)主题学习:仅用一把无刻度的直尺作图【阅读理解】任务:如图1,点D、E分别在的边、上,,仅用一把无刻度的直尺作、的中点.

操作:如图2,连接、交于点P,连接交于点M,延长交于点N,则M、N分别为、的中点.理由:由可得及,所以,.所以,.同理,由及,可得,.所以.所以,则,,即M、N分别为、的中点.【实践操作】请仅用一把无刻度的直尺完成下列作图,要求:不写作法,保留作图痕迹.(1)如图3,,点E、F在直线上.①作线段的中点;②在①中作图的基础上,在直线上位于点F的右侧作一点P,使得;(2)小明发现,如果重复上面的过程,就可以作出长度是已知线段长度的3倍、4倍、…k倍(k为正整数)的线段.如图4,,已知点、在上,他利用上述方法作出了.点E、F在直线上,请在图4中作出线段的三等分点;【探索发现】请仅用一把无刻度的直尺完成作图,要求:不写作法,保留作图痕迹.(3)如图5,是的中位线.请在线段上作出一点Q,使得(要求用两种方法).【答案】(1)①见解析,②见解析;(2)见解析;(3)见解析【分析】实践操作(1)①根据[阅读理解]部分的作法:在上方任取一点,得到,与交于点,交于点,连接,交于点,作射线交,分别于,,点即为所求点;②作射线交于点,作射线交于点,点即为所求;(2)根据上述作法,有两种作法;[探索发现]如作法一,根据相似可知,连接,交于点,则,即点是的三等分点之一,由此可以得出过点作的平行线;同理可得点是的三等分点之一,则,即点为所求作点.【详解】解:[实践操作](1)①如图,点即为所求作的点;②如图,点即为所求作的点;(2)如图,作法一、作法二、点,即为所求作的点;[探索发现](3)如图,作法一、作法二、作法三、作法四、作法五、点即为所求的点.【点睛】本题主要相似三角形的性质与判定,复杂的几何作图,考查类比的数学思想,理解[阅读理解]部分中,为中点是解题关键.5.(2024·江苏宿迁·中考真题)在综合实践活动课上,同学们以折叠正方形纸片展开数学探究活动【操作判断】操作一:如图①,对折正方形纸片,得到折痕,把纸片展平;操作二:如图②,在边上选一点E,沿折叠,使点A落在正方形内部,得到折痕;操作三:如图③,在边上选一点F,沿折叠,使边与边重合,得到折痕把正方形纸片展平,得图④,折痕与的交点分别为G、H.根据以上操作,得________.【探究证明】(1)如图⑤,连接,试判断的形状并证明;(2)如图⑥,连接,过点G作的垂线,分别交于点P、Q、M.求证:.【深入研究】若,请求出的值(用含k的代数式表示).【答案】[操作判断]45;[探究证明](1)等腰直角三角形,理由见详解;(2)见详解;[深入研究]【分析】[操作判断]根据正方形的性质以及折叠的性质即可求解;[探究证明](1)先证明,再证明,则,继而得到,因此,,即是等腰直角三角形;(2)由翻折得,,由,得到,故,因此,而由,得到,则,因此;[深入研究]连接,先证明,则,由,设,则,而,

则,可得,,,那么,故.【详解】[操作判断]解:如图,由题意得,,∵四边形是正方形,∴,∴,∴,∴,即,故答案为:45;[探究证明]解:(1)如图,∵四边形是正方形,∴,,∵,∴,∵,∴,∴,∴,∵,∴,∴,∴,∴,,∴是等腰直角三角形;(2)如图,由翻折得,,∵四边形是正方形,∴,即,∵,∴,∴,∴,∴,∵,∴,∴,∴,∴,∴;[深入研究]解:如图,连接,∵四边形是正方形,∴,,,∵是对角线,∴,∵,∴,∴,∴,∴,在中,,∴,∴,∵,∴设,∴,∵,∴,∴,∴,∴,∴,∴,∴,∴.【点睛】本题考查了正方形背景下的折叠问题,相似三角形的判定与性质,正方形的性质,折叠的性质,等腰三角形的判定,解直角三角形,熟练掌握知识点,正确添加辅助线是解题的关键.6.(2024·四川资阳·中考真题)(1)【观察发现】如图1,在中,点D在边上.若,则,请证明;(2)【灵活运用】如图2,在中,,点D为边的中点,,点E在上,连接,.若,求的长;(3)【拓展延伸】如图3,在菱形中,,点E,F分别在边,上,,延长,相交于点G.若,,求的长.【答案】(1)见解析;(2);(3)【分析】(1)证明,得出,即可证明结论;(2)过点C作于点F,过点D作于点G,解直角三角形得出,,证明,得出,求出,根据勾股定理得出,得出,证明,得出,求出;(3)连接,证明,得出,求出,证明为直角三角形,得出,根据勾股定理求出,证明,得出,求出结果即可.【详解】解:(1)∵,,∴,∴,∴;(2)过点C作于点F,过点D作于点G,如图所示:则,∴,∵,∴,,∵为的中点,∴,∵,∴,∴,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∵,∴,∴,即,解得:;(3)连接,如图所示:∵四边形为菱形,∴,,,∵,∴,∴,即,∵,∴,∴,∵,∴,∴,∵,∴,∴,解得:,负值舍去,∴,∴,∵,∴为直角三角形,,∴,∴在中根据勾股定理得:,∴,∵,∴,∴,即,解得:.【点睛】本题主要考查了菱形的性质,勾股定理及其逆定理,三角函数的应用,三角形相似的判定和性质,平行线的性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.7.(2024·湖南长沙·中考真题)对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形;

)②内角不等于的菱形一定是“内切型单圆”四边形;

)③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有.(

)(2)如图1,已知四边形内接于,四条边长满足:.①该四边形是“______”四边形(从约定的四种类型中选一种填入);②若的平分线交于点E,的平分线交于点F,连接.求证:是的直径.(3)已知四边形是“完美型双圆”四边形,它的内切圆与分别相切于点E,F,G,H.①如图2.连接交于点P.求证:.②如图3,连接,若,,,求内切圆的半径r及的长.【答案】(1)①×;②√;③√(2)①外接型单圆;②

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论