




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试题PAGEPAGE1河北省邢台市名校联盟2023-2024学年高二下学期期中考试数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A版选择性必修第二册第五章,选择性必修第三册.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某学校开设了5门不同的科技类课程,5门不同的运动类课程和5门不同的自然类课程供学生学习,某位学生任选1门课程学习,则不同的选法共有()A.5种 B.15种 C.25种 D.125种【答案】B【解析】根据分类加法计数原理,从各类课程中任选1门课程的不同选法共有种.故选:.2.由5对数据绘制散点图,其样本点呈直线趋势,且线性回归方程为,则()A.13 B.14 C.15 D.16【答案】C【解析】由题意可得,,又经过点,,所以,解得.故选:C.3.已知函数,则()A. B.0 C.1 D.2【答案】C【解析】因为,所以.故选:C.4.的展开式中的系数为()A. B.448 C. D.196【答案】A【解析】展开式的通项公式为,要得到项,令,即.则的系数为.故选:A.5.已知,则()A. B. C. D.【答案】B【解析】故选:B.6.甲、乙两社团各有3名男党员、3名女党员,从甲、乙两社团中各随机选出1名党员参加宪法知识比赛.设事件为“从甲社团中选出的是男党员小凡”,事件为“从乙社团中选出的是男党员”,事件为“从甲、乙两社团中选出的是2名男党员”,事件为“从甲、乙两社团中选出的是1名男党员和1名女党员”,则下列说法不正确的是()A.与相互独立 B.与相互独立C.与相互独立 D.与互斥【答案】B【解析】由题意可得.因为,所以与相互独立,正确.因为,所以与不相互独立,错误.因为,所以与相互独立,C正确.因为,所以与互斥,正确.故选:B.7.袋中装有4个黑球和3个白球,现从中不放回地取球,每次取1个球,直到将袋中的白球取完即终止.每个球在每一次被取出的机会是等可能的,则终止取球时,恰有1个黑球没有被取出的概率为()A. B. C. D.【答案】C【解析】根据题意,“终止取球时,恰有1个黑球没有被取出”等价于“取出了3个白球和3个黑球”,故所求的概率为.故选:C.8.若过点可以作曲线的两条切线,则()A. B.C. D.【答案】B【解析】在曲线上任取一点,,所以曲线在点处的切线方程为.由题意可知,点在直线上,可得,令函数,则.当时,,此时单调递减,当时,,此时单调递增,所以.设,所以,所以当时,h'x>0,hx当时,h'x<0,hx所以,所以,所以,当时,,所以,当时,,所以,的图象如图:由题意可知,直线与的图象有两个交点,则.故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知离散型随机变量的分布列如表所示,若离散型随机变量满足,则()12340.50.30.1A. B.C. D.【答案】BD【解析】由分布列的性质知,则.对A,,故A错误;对C,,故C错误;对B,,故B正确;对D,,故D正确.故选:BD.10.已知,函数的大致图象可能是()A. B.C. D.【答案】ABC【解析】对于A,当时,,,为定义在上的奇函数,图象关于原点对称;当时,,,当时,;当时,;在上单调递增,在上单调递减,且当时,恒成立,由对称性知:在上单调递减,在上单调递增,且当时,恒成立,又,A正确;对于B,当时,,,为定义在上的偶函数,图象关于轴对称;当时,,,当时,;当时,;在上单调递增,在上单调递减,且当时,恒成立,由对称性知:在上单调递增,在上单调递减,且当时,恒成立,又,B正确;对于C,当时,,,,的定义域为,为定义在上的偶函数,图象关于轴对称;当时,,,在上单调递减,且当时,恒成立;由对称性知:在上单调递增,且当时,恒成立,C正确;对于D,由图象可知:,即在处有意义,则;又图象关于轴对称,偶函数,,此时图象应为B中图象,D错误.故选:ABC.11.某同学进行定点投篮训练,设该同学每次投中的概率均为,且每次投篮互不影响,则下列说法正确的是()A.当时,该同学共进行3次投篮,恰好命中2次的概率为0.144B.当时,该同学共进行10次投篮,表示命中的次数,则C.当时,该同学共进行10次投篮,恰好命中次的概率为时,最大D.若该同学共进行次投篮,其中投中次的概率为,则【答案】BCD【解析】对于选项,所求概率为.对于选项,.对于选项,,当最大时,,即所以即解得,又,所以.故为6时,最大.对于D选项,.因为,,两式相加得,所以,所以.故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.已知随机变量服从,若,则______.【答案】【解析】因为,及正态分布的对称性可得.13.要安排5名学生到3个乡村做志愿者,每名学生只能选择去1个村,每个村里至少安排1名志愿者,其中学生甲不分配到村,则不同的安排方法种数为______.【答案】100【解析】当村安排1人时,不同的安排方法种数为;当村安排2人时,不同的安排方法种数为;当村安排3人时,不同的安排方法种数为.综上,共有56+36+8=100种不同的安排方法.14.已知函数的最小值为0,则的取值范围为______.【答案】【解析】令,则,由,换元可得,则,当时,,当时,,所以在0,1上单调递减,在1,+∞上单调递增,则.因为函数的最小值为0,所以有解,当时,不符合题意,当时,则,即有解.令,则,当时,,当时,,所以hx在上单调递增,在上单调递减,所以,所以或.综上,的取值范围为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.为了给学生提供更为丰富的校园文化生活,学校增设了两门全新的课程,学生根据自己的兴趣爱好在这两门课程中任选一门进行学习.学校统计了学生的选课情况,得到如下表格.选择课程选择课程男生4060女生2080(1)根据上表,依据小概率值的独立性检验,能否据此推断选择课程与性别有关?(2)现从男生的样本中,按分层抽样的方法选出5人组成一个小组,再从这5名男生中抽取3人做问卷调查,求这3人中选择课程的人数比选择课程的人数多的概率.附:.0.050.010.0050.0013.8416.6357.87910.828解:(1)零假设:选择课程与性别无关.根据小概率值的独立性检验,推断不成立,即认为选择课程与性别有关.(2)选出的5名男生中,选择课程的人数为,选择课程人数为,这3人中选择课程的人数比选择课程的人数多有如下两种可能:选择课程有3人,数选择课程有0人,此种有种选法;选择课程有2人,数选择课程有1人,此种有种选法;记“这3人中选择课程的人数比选择课程的人数多”为事件,.16.某档知识竞赛节目的规则如下:甲、乙两人以抢答的方式答题,抢到并回答正确得1分,答错则对方得1分,先得3分者获胜.已知甲、乙两人每次抢到题的概率都为,甲、乙两人每道题答对的概率分别为,并且每道题两人答对与否相互独立.(1)求第一题结束时甲获得1分的概率;(2)求甲获得胜利的概率.解:(1)第一题结束时甲获得1分的概率为.(2)由(1)知,在每道题的抢答中甲、乙获得1分的概率分别为,两人共抢答了3道题,比赛结束且甲获胜的概率,两人共抢答了4道题,比赛结束且甲获胜的概率,两人共抢答了5道题,比赛结束且甲获胜的概率,故甲获得胜利的概率.17.已知函数.(1)讨论的单调性;(2)已知函数有两个零点,求实数的取值范围.解:(1)的定义域为,.若,则恒成立,在上单调递增;若,则当时,,即在上单调递增;当时,,即在上单调递减;综上所述,当时,在上单调递增,当时,在上单调递增,在上单调递减;(2),则,又因函数单调递增,且,所以当时,,当时,,所以在上单调递减,在上单调递增.当,即时,,,所以在和上各有一个零点.当时,的最小值为,且,所以在上至多只有一个零点.综上,实数的取值范围是.18.已知函数.(1)求的极值.(2)已知,且.①求的取值范围;②证明:.解:(1)由题意,则当时,,当时,,所以在和上单调递增,在上单调递减,所以当时,取得极小值,当时,取得极大值.(2)①因为当时,,且在和上单调递增,在上单调递减,且,又,,所以的取值范围为.②因为,,由(1)的单调性可知,令,则,因为,所以,即,解得,所以,要证,即证.令,则,所以在上单调递增,所以,故成立.19.“布朗运动”是指悬浮在液体或气体中的微小颗粒所做的永不停息的无规则运动,在如图所示的试验容器中,容器由三个仓组成,某粒子做布朗运动时每次会从所在仓的通道口中等可能随机选择一个到达相邻仓,且粒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 傣族舞蹈文化特征
- 幼儿手指律动《啊呜手指歌》
- 2025网签版合作协议合同
- 人教版小学二年级上册数学 第1单元 第2课时 认识米 用米量 教案
- 软件开发合同技术合同协议书
- 2025关于企业办公租赁合同文本范例
- 2025建筑工程水电安装劳务分包合同
- 版二手住宅买卖合同书样本
- 农户土地承包合同签订指南
- 2025驾驶员安全责任合同
- 《大学英语》课程思政
- 中药汤剂课件完整版
- 如何做好我国新药研发的市场筛选
- 《神经外科常用药物》
- 八年级物理下学期期中考试卷
- 厄尔尼诺和拉尼娜现象课件
- 钢结构相关施工质量通病及预防措施
- TDASI 017-2021 门窗填缝砂浆
- 织码匠文字材料语言源码目录
- 葡萄酒购销合同范本(2篇)
- GB/T 37869.10-2019玻璃容器真空凸缘瓶口第10部分:六旋77普通规格
评论
0/150
提交评论