




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022级备课组教研活动中心发言人说课内容记录表(主页)时间2025.4.1备课组高2022级数学组中心发言人本次教研会议程1.说课:高考专题概率与统计;2.赖组长总结近期情况及教学进度、安排月考试题命制;3.覃组长安排下周晚考周考考题命制及下次说课内容;4.景校长总结讲话;中心发言人详细说课内容:1.上周学生存在问题反馈,建议解决问题的办法。月考反馈问题:(1)基础题拿不到分,出现错误的情况:誊抄出错、计算出错等;(2)对于基础部分的掌握较差,如:等;(3)圆锥曲线题目的第一个问的得分率较低;
(4)答题卡的书写与解题步骤很差;
解决方法:(1)强调做题质量,课前5分钟都抽背;(2)建议午自习做一个大题,专门看书写步骤;(3)抓好踩线生,不定时让踩线生来讲题;(4)做好错题重做,给学生留时间思考错因、陷阱等;2.本课程预计课时分配第9讲计数原理与二项式定理2课时第10讲概率、随机变量及其分布4课时第11讲统计与成对数据的分析3课时准备工作:研读教材及高考题,研做一轮教辅资料;六个步骤必须体现,篇幅多少可以调整;务必在教研会召开前交由本组蹲点领导检查签字;每位组员印一份;12022概率与统计专题专题2022—2024年真题分析:新高考I卷新高考II卷题号分值考查内容题号分值考查内容单选5题5分古典概型单选5题5分排列与组合2022年填空13题5分二项式定理填空13题5分正态分布解答19题12分频率分布直方图多选9题6分数据的平均数、单选3题5分计数原理中位数、标准差2023年填空13题5分排列与组合多选12题6分二项分布解答21题12分全概率公式解答19题12分频率分布离散型随机变量直方图2024年多选9题6分正态分布单选4题5分差等填空14题5分概率填空14题5分列举法表示样本空间解答19题17分与数列综合考查解答18题17分量的分布列一、新高考命题趋势与特点1.强调核心素养(1)数据分析能力:通过图表、统计量分析实际问题,如频率分布直方图、散点图、箱线图等。(2)数学建模:将现实问题抽象为概率模型(如二项分布、正态分布)或统计推断问题(如抽样调查、回归分析)。(3)逻辑推理:结合条件概率、独立性、假设检验等知识进行逻辑分析。2.贴近实际情境规则、交通流量)或科学研究(如实验数据分析)。例:用概率分析核酸检测的“混检策略”效率,或用统计方法评估新药疗效。3.综合性与创新性概率与统计常与其他模块结合考查,如与数列、导数等融合命题(如求随机变量期望的最值)。2二、核心考查内容概率部分)基础题型:古典概型、几何概型(新高考中几何概型考查减少,更侧重古典概型)。)条件概率与全概率公式(新增重点!!!):结合事件独立性、乘法公式综合命题。)随机变量分布:离散型:二项分布、超几何分布(尤其是“不放回抽样”问题)。连续型:正态分布的对称性、原则应用。)数学期望与方差:实际意义解释(如投资风险、产品质量稳定性)。统计部分)统计图表分析:从频率分布表、直方图中提取信息,计算中位数、众数、百分位数等。)抽样方法:分层抽样、系统抽样的实际应用(如保证样本代表性)。)线性回归与独立性检验:回归方程求解(最小二乘法)、相关系数解释变量关系强弱。独立性检验(检验)判断分类变量关联性。)参数估计与假设检验(难度提升):用样本均值、方差估计总体参数,结合正态分布或t分布求置信区间。假设检验的逻辑(原假设、备择假设、P值判断)。三、难点与易错点难点突破)条件概率的逆向思维:贝叶斯公式需理清事件逻辑关系。)分布列的完整性:离散型随机变量需列出所有可能取值及对应概率,确保。)假设检验的步骤易错警示)混淆相互独立事件、互斥事件与“对立事件”。)计算方差时忽略公式(如)。)统计图表分析中误读数据(如将频率直方图的纵轴当作频数)。四、备考建议基础强化:1)熟记公式:全概率公式、期望、方差公式等、回归方程。2)理解概念:独立性、无偏估计、显著性水平。真题精练:1)重点研究近3年新高考真题,总结高频考点(如条件概率、正态分布应用)。2)针对开放题训练,学会用统计结论提出合理建议规范答题:1)概率题需写出事件定义、公式引用、计算过程;2)统计题需明确步骤(如假设检验的“四步法”)。32022年新高考I卷高考真题(概率与统计部分)5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.B.C.D.13.的展开式中的系数为________(用数字作答).2022年新高考II卷高考真题(概率与统计部分)5.甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有()A.12种B.24种C.36种D.48种13.已知随机变量X服从正态分布,且,则__________.100率分布直方图:(1(2)估计该地区一位这种疾病患者的年龄位于区间的概率;(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).42023年新高考I卷高考真题(概率与统计部分)9.有一组样本数据,,其中是最小值,是最大值,则()A.,,,的平均数等于,的平均数B.,,,的中位数等于,的中位数C.,,,的标准差不小于,的标准差D.,,,的极差不大于,的极差13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有_________种(用数字作答).方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签决定第一次投篮的人选,第一次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率.(2)求第i次投篮的人是甲的概率.(3)已知:若随机变量服从两点分布,且,,则,记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求.52023年新高考II卷高考真题(概率与统计部分)3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A.种B.种C.种D.种12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次,收出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率时,求临界值c和误诊率;(2在区间的最小值.62024年新高考I卷高考真题(概率与统计部分).为了解推动出口后的亩差.已知该种植区以往的亩收入X服从正态分布Y服从正态分布,则(若随机变量Z服从正态分布,则)()A.B.C.D.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8.两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡10弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为___________.72024年新高考II卷高考真题(概率与统计部分)4.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:)并部分整理如下表所示.亩产频数61218302410根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于B.100块稻田中亩产量低于的稻田所占比例超过
C.100块稻田亩产量的极差介于到之间
D.100块稻田亩产量的平均值介于到之间的方格表中选4__________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是__________.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成.比赛具体规则如下:第一阶段由参赛队中一名队员投篮3301进入第二阶段.第二阶段由该队的另一名队员投篮3次,每次投篮投中得5分,未投中得0分,该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立.(1)若,,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设.(ⅰ)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ⅱ)为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?81.在1,2,⋯,500中,被5除余2的数共有多少个?2.同的报法的种数是还是个班分别从5还是?3.(1)从5件不同的礼物中选出4件送给4位同学,每人一件,有多少种不同的送法?(2)有5个编了号的抽屉,要放进3本不同的书,不同的方法有多少种?(一个抽屉可放多本书)4.口袋中装有8个白球和10个红球,每个球编有不同的号码,现从中取出2个球:(1)恰好是白球、红球各一个的取法有多少种?(2)恰好是两个白球的取法有多少种?(3)至少有一个白球的取法有多少种?(4)两球的颜色相同的取法有多少种?5.在国庆长假期间。要从7人中选若干人在7天假期值班(每天只需1值班2天,有多少种可能的安排方法?6.用0~9这10个数字。可以组成多少个没有重复数字的三位数?7.(1)空间中有8个点,其中任何4个点不共面,过每3个点作一个平面,可以作多少个平面?1044体?8.从5名男生和4名女生中选出4人去参加一项创新大赛;(1)如果4人中男生女生各选2人,那么有多少种选法?(2)如果男生中的甲和女生中的乙必须在内,那么有多少种选法?(3)如果男生中的甲和女生中的乙至少要有1人在内,那么有多少种选法?(4)如果4人中必须既有男生又有女生,那么有多少种选法?9(1)求的展开式的前4项;(2)求的展开式中的中间一项(4)求的展开式的中间两项;(5)展开式中,含x4的项的系数(6)已知的展开式中的第4项和第8项的二项式系数相等,求这两项的二项式系数。9(7展开式中按照x升幂排列的第三项;(8)的展开式中,含x2项的系数。10.袋子中有10个除颜色外完全相同的小球,其中7个黑球,每个从袋子中随机摸出1个球摸出的球不再放回,求:(1)在第一次摸到白球的条件下,第2次摸到白球的概率;(2)两次都摸到白球的概率.11.甲乙两人向同目标各射击一次,已知甲命中目标的概率为0.6,乙命中目标的概率为0.5.已知目标至少被命中1次,求甲命中目标的概率.12.甲和乙两个箱子中各装有10个球,其中甲箱中有5个红球、5个白球,乙箱中有8个红球、2个白球,掷一枚质地均匀的骰子,如果点数为1或2,从甲箱子中随机摸出一个球;如果点数为3,4,5,6,从乙箱子中随机摸出1个球.求摸出红球的概率.13.在A,B,C三个地区暴发了流感,在三个地区分别有6%,5%,4%的人患了流感.假设这三个地区的人口数的比为5:7:8,现从这三个地区中任选取一个人.(1)求这个人患流感的概率;(2)如果此人患流感,求此人选自A地区的概率.14.某种资格证考试,每位考生一年内最多有3次考试机会.一旦某次考试通过,便可领取资格证书,不再参加以后考试,否则就继续参加考试,直到用完3次机会.李明决定参加考试,如果他每次考试通过的概率依次为0.6,0.7,0.8,且每次考试是否通过相互独立,试求:(1)李明在一年内参加考试次数X的分布列;(2)李明在一年内领到资格证书的概率.15.一个车间有3台车床,它们各自独立工作.设同时发生故障的车床数为求X的分布列.(1)假设这3台车床型号相同,它们发生故障的概率都是20%;(2)这3台车床有A型号2台,B型号1台,A型车床发生故障的概率为10%,B型车床发生故障的概率为20%.16.长时间玩可能影响视力.据调查,某校学生大约40%的人近视,而该校大约有20%的学生每天玩超过1h,这些人的近视率约为50%。现从每天玩不超过1h的学生中任意调查一名学生,求他近视的概率。17甲、乙、丙三人相互做传球训练,第1次由甲球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一个。求第n次传球后球在甲手中的概率。18.某城市高中数学统考,假设考试成绩服从正态分布比例将考试成绩分为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行信贷政策变化对企业融资的影响分析试题及答案
- 1《中国人民站起来了》公开课一等奖创新教学设计统编版高中语文选择性必修上册
- 通勤事故免责协议
- 公共卫生与微生物检测的职责及试题及答案
- 2025年特许金融分析师考试练习问题试题及答案
- 复习计划制定与特许金融分析师考试试题及答案
- 重点突破证券从业资格证试题及答案
- 廉政承诺书范文
- 2025年银行资格考试的技能训练计划试题及答案
- 理财师备考中的学习习惯培养试题及答案
- 微专题高考地理二轮复习 -地质地貌的形成过程
- TCMBA 020-2023 人正常乳腺及乳腺癌类器官制备、冻存、复苏和鉴定操作指南
- 作风建设试题
- GB/T 6070-2007真空技术法兰尺寸
- GB/T 20041.21-2017电缆管理用导管系统第21部分:刚性导管系统的特殊要求
- GB/T 10007-2008硬质泡沫塑料剪切强度试验方法
- 临床医学之预后研究
- GA/T 1147-2014车辆驾驶人员血液酒精含量检验实验室规范
- 人教版2023年初中道法八年级下册知识点汇总(思维导图)
- 供电系统及安全用电
- 第六章社会总资本再生产和流通课件
评论
0/150
提交评论