2024智能制造:美国制造业人工智能应用研究报告_第1页
2024智能制造:美国制造业人工智能应用研究报告_第2页
2024智能制造:美国制造业人工智能应用研究报告_第3页
2024智能制造:美国制造业人工智能应用研究报告_第4页
2024智能制造:美国制造业人工智能应用研究报告_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

》orkingSmarter:

HowManufacturersAre

UsingArtificialIntelligence

KeyFindingsandInsightsfrom

Manufacturers

MAY2024

2

WorkingSmarter:

HowManufacturersAreUsingArtificialIntelligence

May2024

KeyFindingsandInsightsfromManufacturers

NationalAssociationofManufacturers

3

>ALetterfromtheChair

Artificialintelligencehasdominatedtheheadlinesinrecentyears,andpeoplearetrulybeginningtograspthepossibilitiesandpowerofthistechnology.ThelaunchofChatGPTandothergenerativeAItoolshasmadethetechnologyevenmore

accessible,puttingitinthehandsofeverydayAmericans.

Manufacturershavebeenattheforefrontofdevelopingandimplementingintelligent

systemsandAItechnologies,includingmachinelearning,deeplearning,natural

languageprocessing,machinevision,digitaltwinsandrobotics.Thishaspositioned

manufacturersuniquelyasbothdevelopersanddeployersofAIinnovations,providinginvaluableinsightsintotheeffectiveandresponsibleuseofthesetechnologies.

AIcanbeaforcemultiplier—andaforceforgood.AtJohnson&Johnson,forexample,AIhasbeenused

effectivelyinanumberofareas,rangingfromthedrugdevelopmentprocesstorestockinghospitals.Ithelpsussortthroughmassiveamountsofdata,yieldinginsightsfortheimprovedhealthandwellnessofpeoplearound

theworld.Itaidsusincreatingtargetedtreatmentsandgettingthemtotherightpatientsattherighttime.Whenweconductclinicaltrials,AIhelpsusmoreefficientlyestablishsafetyandeffectivenessguardrails,whileallowingustoconducttrialsatalargerscale.AIalsogivesusafarstrongermasteryoveroursupplychains.Overall,it

helpsourpeopledoabetterjoboflivinguptoourcommitmentofimprovinghealthcareoutcomesandmakingourtowns,countryandworldabetterplace.

AIfunctionsbestwithhumansasthecoredecision-makerswithinAI-enhancedprocesses.Theseoperators

mustbeknowledgeable,well-trainedandabletoutilizethetechnologysafelyandtoitsfullestpotential.Early

on,Johnson&JohnsondevelopedanethicalAIframework,aswellasadatascienceacademytoenhanceourteams’digitalacumenandequipthemwithAIengagementskills.AsmanufacturersupskillandtrainmoreteammemberstoworkwithAI,thetechnologywillempowerthoseworkerstobemoreinnovativeandproductive.

Asyou’llreadinthispaper,manufacturersofallsizeshavefoundsimilarwaystouseAItoamplifytheir

operationsandliveuptotheirowncommitments.WithAIsupportingus,manufacturerscandosomuchmoretoimprovethequalityoflifeforeveryone.

Giventheimportanceofthisgenerationaltechnology,policymakersmustdevelopsensible,carefullythought-outframeworksforvariousAIapplications—andtheyshouldleanonmanufacturers’yearsofexperiencetoengineerthoseframeworks.WeneedapolicyenvironmentthatsupportsinnovationandgrowthinmanufacturingAI,

becauseitwillbolsterU.S.competitivenessandleadershipinthiscriticalemergingfield.

AllpossiblefuturesformodernmanufacturingintheU.S.involveAI.Thistechnologyisagame-changer,anditwillcontinueprovingitselftobeanessentialpartnerontheshopfloor.ThispaperofferspolicymakersawindowintothefutureofAIinmodernmanufacturing—andaroadmaptohelpusgetthere.

KathrynWengel

ExecutiveVicePresidentandChiefTechnicalOperations&RiskOfficer,Johnson&JohnsonChairoftheBoard,NationalAssociationofManufacturers

4

>KeyInsights

nArtificialintelligencetoolsareusedwidelyacrosstheindustryandarekeytoadvancingmodernmanufacturing.

nManufacturersareconsumers,developersanddeployersofAIthroughouttheirproductionprocesses.

nThepotentialapplicationsforAIinmanufacturingareexpansiveandcanhelpindustryleadersimproveefficiency,productdevelopment,safety,predictivemaintenanceandsupplychainlogistics.

nAIreferstoalargeumbrellaoftechnologiesthatincludemachinelearning,machinevisionanddeeplearning.Thesetoolsallowmanufacturerstomaketheirshopfloorssafer,improveworkexperienceandcreate

innovativeproductsthatsolveglobalchallenges.

nManufacturersareimplementingandtestingAIprogramsinawaythatkeepsworkersasthecentraldriversanddecision-makersforAIprocessesorproducts.

nToremainagloballeaderinadvancingAIandsupportingmanufacturinginnovation,theU.S.shouldtakea

cautiousapproachtoAIregulation,tailoranyregulationtospecificusecasesandrisks,right-sizecompliance

burdens,supportR&Dandnewworkforcepathwaysandensurethatregulatoryframeworksarealignedglobally.

5

>WhatIsAI?

“WeseeAIasakeystrategicenablerfor

oureffectiveness,to

dothingsbetter,fasterandmoreeconomically,whiledelivering

essentialproductstoourcustomers.”

–SreedharSistu,

VicePresident,AIOffers,SchneiderElectric

Innovationiswhatdrivesmanufacturing,andasaresult,

manufacturershavealwaysbeenattheforefrontofnewtechnologies,strivingtooperatemoreefficientlyandeffectively.Nowmanufacturersareleadingintheadoptionanduseofartificialintelligence.AIisa

broadumbrellaterm,definedbytheNationalInstituteofStandards

andTechnologyasa“systemthatcan,foragivensetofobjectives,

generateoutputssuchaspredictions,recommendationsordecisionsinfluencingrealorvirtualenvironments.”1Thesesystemsusedataandhuman-builtalgorithmstosimulatehowhumansperceive,learnand

respondtoquestionsandprompts.AIsystemsareoftenconnectedtoothermachinesandrespondtothedigitalandphysicalworldtosupportprocessesthatcaneitherbeverysimpleorcomplex.2

Whilerecentadvancementsinlargelanguagemodelsandchatbots,suchasChatGPTandGoogleGemini,haveplacedaspotlighton

generativeAItechnology,theseapplicationsrepresentbutafraction

ofthetypesofAIcurrentlyinuse.Infact,manufacturershavebeendevelopinganddeployingintelligent

systemsandAItechnologyformanyyears,intheformofmachinelearninganddeeplearning,natural

languageprocessing,machinevision,digitaltwinsandrobotics,allfurtherexplainedinthefollowingpages.

Theseinnovationsareoftencategorizedunderthebannerof“advancedmanufacturing”or“Manufacturing

4.0.”AIintegrationintomanufacturingprocesseshascontributedalreadytosignificantlyimprovedoperationsandtothedevelopmentofnewproducts.3

AIrepresentsatremendousopportunityforthemanufacturingindustry.AItechnologiescanhelp

manufacturersimprovetheiroperationsbyupgradinghowtheyanalyzelargedatasets,identifyingknowledgegaps,providingsolutionsandenablingteamstodevelopnewefficiencesatscale.WidespreadimplementationofAIacrosstheindustrycouldleadtomoreefficientprocesses,increasedsustainability,moreinnovative

productsandsaferworkplaces.TheseinnovationswillbothgrowtheeconomyandbolsterU.S.global

leadershipinmanufacturing.GiventhevastpotentialofAI,policyapproachestoAIshouldfurtherthe

developmentofthesetechnologiesandsupporttheirresponsibleusebymanufacturersacrossawiderangeofapplications—strengtheninginnovationand,inturn,supportingU.S.competitivenessontheworldstage.

ThisreportreviewshowAIhasevolvedwithinmanufacturingandhowmanufacturersaredevelopingand

deployingAItechnologiestoinnovatewithintheirbusinessoperationsandacrosstheindustry.ManufacturersarealeadingvoiceontheopportunitiespresentedbyAIandhavemuchtoshareabouttheirexperiences.

ThisreportconcludeswithpolicyrecommendationsthatwouldbestequipthemanufacturingindustrytotakeadvantageoftheimmenseopportunitiesAItechnologyhastooffer.TheNAMsupportsapolicyenvironment

forAIthatencouragessafe,responsibledevelopmentwhilepromotingtheinnovativegrowthofthetechnology.

1NationalInstituteofStandardsandTechnology,ArtificialIntelligenceRiskManagementFramework(AIRMF1.0)(Washington,D.C.:

DepartmentofCommerce,2023),1,

/nistpubs/ai/NIST.AI.100-1.pdf

.

2TomCulver,LeeGreenandJimRedden,“PeeringintotheFutureofIntelligentSystems,”Research-TechnologyManagement62,no.3(May2019):21-30,

/doi/abs/10.1080/08956308.2019.1587322

.

3HailiZhang,XiaotangZhangandMichaelSong,“DeployingAIforNewProductDevelopmentSuccess,”Research-TechnologyManagement64,no.5(August2021):50-57,

/doi/full/10.1080/08956308.2021.1942646

.

6

>HowDidWeGetHere?

AIinmanufacturingismadepossiblebytheconnectednatureofmachinesandtoolsinmanufacturing

operations.Widespreaddigitalintegration,usingconnectedsensorsandinstrumentstocollectdataacrossshopfloors,enablesmachinelearning,atypeofAIthatwasdevelopedasearlyasthe1980s.4Amachinelearning

systemanalyzesdataandrecognizespatternstotrainitselftomakedecisionsandperformtasksefficiently.

Deeplearning,anextensionofmachinelearningthatevolvedthroughthe2010s,incorporatesmultiplelayersofreasoninganddataanalysistomimichowthehumanbrainworks.5MachinelearninganddeeplearningarethebasisformostoftheAItoolsmanufacturersuse.AsofOctober2023,74%ofsurveyedmanufacturershad

investedorwereplanningtoinvestinmachinelearning.6

Artificialintelligence:atechnologythatcan,foragivensetofobjectives,generateoutputssuchaspredictions,recommendationsor

decisionsthatemulatehumanbehavior

Machinelearning:amodelthatuses

advancedalgorithmstoanalyzedataandrecognizepatternstotrainitselftomakedecisionsandperformtasks

Deeplearning:asystemthatincorporates

multiplelayersofreasoninganddataanalysistomimichowthehumanbrainworks

GenerativeAI:atoolthatusesdeep

learningtocreatecontent,suchastext,imagesorcode,basedondetected

patternsinlargedatasets

4JimDavis,“PuttingIntelligenceBackintoAI,”ManufacturingLeadershipCouncil(Dec.8,2020),

/putting-intelligence-back-into-ai-17349/?stream=all-news-insights

;

MichaelPlatzandShantonWilcox,“AchievingImpactfromEnd-to-EndDigitalization,”ManufacturingLeadershipJournal(January2023),

/achieving-impact-from-end-to-end-digitization-31586/?stream=ml-journal

.

5“Whatisdeeplearning?,”IBM,accessedJan.30,2023,

/topics/deep-learning

.

6PenelopeBrown,“SURVEY:ManufacturersGoAll-InonAI,ManufacturingLeadershipCouncil(Oct.1,2023),

/survey-manufacturers-go-all-in-on-ai-35350/?stream=ml-journal

.

7

>HowDoManufacturersUseAI?

Manufacturersarecollectorsofknowledge.Theybringtogethertheskillsandideasofpeople,sometimesfromallaroundtheworld,tocreatenewproducts.Thesegoodscanbeassmallandsimpleasaboltoraslarge

andcomplexasanautomobile.Themodernshopfloorisinterconnectedandtechnologicallyadvanced.This

enablesmanufacturerstocollectdataabouttheiroperationsandenhancetheirproductionprocesses.Inshort,thetechnologicalinnovationsofmodernmanufacturingenablemachinestoamplifytheproductivepowerof

manufacturingworkers—andAIisthenextstepinthisinnovativejourney.

In2023,theNAM’sManufacturingLeadershipCouncil,aglobalnetworkofexecutivesinthemanufacturing

industry,conductedsurveysonhowmanufacturersuseAIintheiroperationstoexploresomeofthewaysAIisalreadymakinganimpact.WhenaskedaboutwhytheywereinvestinginM4.0technologiesordigitally

integratedinnovationssuchasAI,respondentspointedtocostreduction,operationalawarenessandprocessoptimization,asshowninFigure1.7Thisincludesvisibilityintooperationsbycollectingandanalyzingdatatodevelopinsightintotheperformanceofamanufacturingprocess,andusingdigitaltechnologyanddatato

determineaprocess’sefficiency,speed,equipmentutilization,materialsusage,waste,etc.,andmakingdecisionsonhowanyofthosefacetscouldbeimproved.

Figure1:WhatAretheMostImportantReasonsYourCompanyInvestsinTransformativeM4.0Technologies?(CheckTopThreeReasons)

72%

51%

41%

32%

22%

21%

19%

14%11%

11%

5%

0%10%20%30%40%50%60%70%80%

ReducecostsandimproveoperationalefficiencyImproveoperationalvisibilityandresponsiveness ImproveprocessoptimizationandcontrolCompensateforlaborshortages

Improvequality

CreatesustainedcompetitiveadvantageImproveassetreliability

Improvespeedtomarket

ImprovecustomerexperienceMitigateimpactfromdemandswingsDon’tknow

Wherepossible,manufacturersdeveloptheirownAItoolstoaccomplishthesetasks.OtherspurchaseAI

productsfromtechnologycompanies.RegardlessofwhethermanufacturersdevelopAItechnologyordeployAItechnology—orboth—theyfindthatAIhelpseasetheburdenofrepetitivetasks,allowingmanufacturingworkerstodevotetheirenergyandtimetomorecomplicatedandforward-thinkingactivitiesandprojects.

7Ibid.

8

AsdisplayedinFigure2,respondentsnotedawiderangeofusesforAIintheiroperations,thetopthreeofwhichweremanufacturingandproduction,inventorymanagementandqualityoperations/R&D.8

ToimplementAI,manufacturersworktoidentifywhichAIsystemisbestsuitedtohelpthemtackletheir

challenges;howtoresponsiblyandtransparentlycollectthedatanecessarytotrainandruntheAImodel;andwheretoimplementAItotransformcurrentprocesses.Inthiscontext,modernmanufacturersviewdataasa

criticalinputthatcanbeleveragedandutilizedtodiscovernewefficiencies.AIishelpingtotransformthatdataanddeploysolutionsatascalenotpossibleforhumansalone.

Figure2:WhichoftheFollowingCorporateFunctionsHaveBeguntheAdoptionofAI?(SelectAllThatApply)

ManufacturingandproductionInventorymanagementQualityoperations

R&DIT/OT

Equipmentmaintenance/installation Supplychain ProductdesignDistribution/logisticsSalesandmarketing

FinannceeHumanresourceess

CustomerserviceandsupportLegal

ProcurementSustainability

39%

33%

24%

24%

21%

17%

11%

11%

9%

7%

7%

6%

4%

3%

3%

3%

0%10%20%30%40%50%

Withthelargeamountsofdatacollectedontheshopfloorandthroughouttheiroperations,manufacturersuseAItodesignproductionprocesses,predictivemaintenanceprogramsandlogisticsdecision-makingmodels,

amongmanyotherexamples.ThesecompaniesarepushingtheboundariesofwhatAIsystemscando.ThisputsmanufacturersinauniquepositiontoguidethedevelopmentoftheAIpolicylandscape.

8DavidBrousell,JeffPumaandPaulTate,TheFutureofIndustrialAIinManufacturing(Washington,D.C.:ManufacturingLeadershipCouncil,

2023),

/wp-content/uploads/2023/06/The-Future-Of-AI-In-Manufacturing-MLC-2023.pdf

.

9

Efficiency

Thecontinued,expandedimplementationofearlyAItechnologies,suchasmachinelearning,hasimproved

manufacturers’efficiency.Greaterefficiencyallowsmanufacturerstoallocateresourcesinamorecost-

effectivemanner,improveshopfloorprocesses,implementmoresustainablepracticesanddiscovernew

opportunitiesforgrowth.IninterviewsconductedbytheNAM,onechemicalproductioncompanystatedthattheapplicationofmachinelearningtodatacollectedfromchemicalreactorsenablesoperatorstomakebetterdecisionsabouthowtooperatethem.TheAImodelalertsoperatorswhenitisoptimaltomakechangesintheprocess,ratherthanmanuallykeepingtrackofallsensorsordependingonaspecificoperationaltimetable.

Humanoperatorsarestillatthecenterofdecision-makingandoperations,butAIhashelpedimprovethereliabilityoftheirprocessesandthequality,deliveryandsafetyoftheirproducts.

“HitachiisfocusedonapplyingAI,machinelearningandrelatedtechnologiestowardaddressingreal-worldchallengesinindustrialandsocietaldomains.

Functionalareasincludemaintenanceandrepair,operationsoptimization,qualityassurance,safetymanagement,supplychainmanagementandautomationand

control,amongothers.Thegoalistheend-to-endoptimizationofkeyindustrialprocesses.”

–ChetanGupta,GMoftheAdvancedAIInnovationCenter,Hitachi,Ltd.andHeadoftheIndustrialAILabatHitachiAmerica

MachinevisionisamorerecentadvancementinAI,enablingindustrialequipmentto“see”bygatheringand

analyzingvisualdatainitsenvironmenttoformconclusions.Almost80%ofMLCsurveyrespondentshad

investedorplannedtoinvestinvisionsystems.9Onelogisticscompanyusesmachinevisiontosortpackages,dependingonAI-enabledrobotstorespondtoandmakedecisionsbasedonever-changingsituationsand

conditionsratherthansimplyrepeatingthesamepatterns.Manycompaniesarealsousingmachinevisionto

performqualitycontrol,quicklyreviewingpartsandmaterialsfordefectsthataremoredifficultforhumansto

detect.Forsomemanufacturers,thishasbeenaparadigmshiftandhasallowedtheirmachinesandprocessestoworkmoreefficientlyandrespondtonewsituationsandproblemsmorequickly.

AImodelscanalsoperformpredictiveanalyticsusingdatacollectedfromdigitallyenableddevices.Aresult

ofthisanalysiscanbepredictivemaintenance,oridentifyingpartsthatarenotperformingefficientlysothat

theycanbereplacedbeforetheybreak.MorethanhalfofMLCsurveyrespondentsstatedthatpredictive

maintenanceisakeyAIapplicationintheiroperations.10Suchefficienciescanpreventunplanneddowntimeforproductionaswellasenhancesustainabilitybyenablingmoreenergy-efficientprocesses,loweringwasteanddecreasingemissions.

9Brown,“SURVEY:ManufacturersGoAll-InonAI.”10Ibid.

10

Safety

“AIgivesustheabilitytocombinedigitalandphysicalteamsandtohelpourpeoplebyreducingrepetitivetasksandphysicalstresswhile

promotingsafety.”

–JoelStenson,SeniorVicePresidentofOperations

Technology,UPS

ManufacturersareinterestedinusingAItoimprovesafety

foremployeesandoperations.OneautomotivemanufacturerisusingAIandmachinevisiontomonitorintersectionsof

productionlanes,lettingworkersknowifaforkliftorother

machineryiscomingaroundthecorner,outsideofthe

peripheryoftheirvision.ThisuseofAIhelpstoprevent

humanmistakesandgreatlyimprovessafetyontheshop

floor.Forindividualworkers,ergonomicassistance,likea

roboticexoskeletonthatcollectsandlearnsfromdataon

thewearer’smovementsandtheenvironment,canenhancehumanstrengthandpreventinjuries.Overtime,thesetoolshavethepotentialtoimproveworkersafety,makejobslessphysicallydemandingandreducehealthcarecosts,whicharekeyconcernsforemployers.

OthercompaniesuseconnecteddevicesandAImodelingtoimprovethecustomerexperience.Infact,47%ofsurveyedmanufacturersplantodeploymorecustomer-facingAItoolsinthenexttwoyears.11Oneautomotivecompanyhasalreadybeguncollectingdatafromtheirnewestvehiclemodelsandalertingcustomerswhen

theAIidentifieschangesintheperformanceofthevehicle,allowinguserstopreventcostly,inconvenientandpotentiallydangerousproblemslater.

ProductDevelopmentandDesign

ResearchershavefoundthatproductdevelopmentcanbenefitfromusingAImodelstolearnfromaccumulateddataandthathigherAIusageinthedevelopmentprocessincreasessuccess.12ManufacturersinmanydifferentindustrysubsectorsareutilizingAItodevelopnewproducts.AsupplierofautomotivepartshascreatedanAI

toolthatprocesseswheelgeometrydata,allowingthecompanytomorequicklydevelopwheeldesignsthatperformbetterandareproducedmoreefficiently.AIallowsthiscompanytobringproductstomarketfaster,

respondtodesignchangesmorequicklyandbetterapplytheknowledgeoftheirengineeringteam,unlockingcontinuousinnovationandlearning.

OnepharmaceuticalcompanysharedthatitisusingAImodelstoidentifynewwaystodevelopmoleculesand

advanceindividualizedtreatmentsfordisease.ThiscompanyisdevelopingtheirownAImodelstofindmorepreciseendpointsfortreatments,whichmakeclinicaltrialssafer,moreeffectiveandwithagreatermarginforsuccess.

Training

Manufacturerswanttokeeptheworkofpeople,notcomputers,atthecenteroftheiroperations.TheingenuityofworkersisakeycomponentinanyAIprocessesorproducts.WhenitcomestoAIinmanufacturing—workersarethedriversanddecision-makers,andAIworkstomaketheirjobseasierandmoreefficient.ManycompanieshavefoundthattheirbestAIoutcomesresultfromenrichingemployees’experienceatwork,thusimproving

theiroutput.AItechnologyisoftenusedtocomplementandaugmenttheworkofhumans,likeaco-pilot.

Thisapproachenhancesworkerefficiencywhilestillprioritizinghumanexperienceandingenuity—ultimately

11Ibid.

12Zhang,ZhangandSong,“DeployingAIforNewProductDevelopmentSuccess.”

11

increasingtrustandconfidenceinAIsystems.13Themosteffective

AImodelsarehuman-centered,allowingthemtolearnandunlearn,

continuouslyimprovingtomeettheneedsoftheirhumanoperators.14

Manufacturersareupskillingtheirworkforceactivelytomeetthe

opportunitiesofAI.Manycompanies,fromlogisticstopharmaceuticals,aresettinguptrainingprogramstohelpemployeesdeveloptheir

confidenceandcompetencyintheuseofAIsystems.Thesetraining

programsincludeafocusonsafetyandcontrol,tolimitriskstoworkersandtoprotectcompanies’intellectualpropertyinthefaceofthe

increasedcybersecurityrisksthatcomefromaninterconnectedshopfloor.

Recruitmentofnewemployeeshasalsochanged.Oneautomotive

suppliernotedthattheyhaveincreasedtheirhiringofthedatascientistsnecessarytobuildandimplementAIsystems.

ThemosteffectiveAI

modelsarehuman-

centered,allowingthemtolearnandunlearn,

continuouslyimprovingtomeettheneedsof

theirhumanoperators.

Attheendofworkers’careers,companiescanuseAIsystemstomanageknowledgeaskeypersonnelenter

retirement.Asof2019,nearlyone-quarterofthemanufacturingworkforcewasover55,15andoneelectrificationandemergingtechnologycompanyisusingAI-utilizingsystemsforknowledgemanagementandtotrainnew

employeesontheskillsoflegacyworkers.TheyarealsousingAImodelstoidentifyfuturechallengesand

predictwhichskillswillbeneeded,identifyinghowmanyemployeeswillneedtobetrainedinthesenewskills.

SupplyChain

ManufacturersareusingAImodelstopredict,preventormitigatedisruptionsintheirsupplychainsandmake

moreinformeddecisionsabouttheirlogisticsplans.Thesetoolsallowtheindustrytobemoreresilienttorisk,

preventproductionstoppagesorshortagesandeffectivelydeliverproductstocustomers.ThisisagrowingareaofAIimplementation,with21%ofsurveyedmanufacturersalreadyusingAIintheirsupplychainmanagement

and60%planningtodeployitinthenext12–24months.16

13JimEuchner,“Littleai,BigAI—GoodAI,BadAI,”Research-TechnologyManagement62,no.3(May2019):10-12,

/doi/full/10.1080/08956308.2019.1587280

.

14Davis,“PuttingIntelligenceBackintoAI.”

15TheManufacturingInstituteandAlfredP.SloanFoundation,TheAgingoftheManufacturingWorkforce(Washington,D.C.,July2019),

/research/the-aging-of-the-manufacturing-workforce/

.

16Brown,“SURVEY:ManufacturersGoAll-InonAI.”

12

Inapplication,AItoolsinthesupplychaincanhelpcompaniesmakethemostoftheirinventories.One

technologyandcomputingcompanybuiltandintegratedanAIprogramthatusedmachinelearningtoassessthecommonpartsacrossdifferentareasoftheiroperations,identifyingwhenandwherepartscouldbeshiftedfromoneareatoanotherasneeded.Becausesparepartshadbeenscrappedpreviouslyifunused,using

machinelearningtoassesshundredsofpartsandgreatlyreducedpotentialwaste—anunfeasibletaskforahumanteam—hassavedthiscompanymillionsofdollarsinreplacementandsourcingcosts.ThecompanyhopestoexpandthisprojecttoincludefurtheradvancementsinAItechnology,includingdeeplearningandgraphneuralnetworks.

Intheaerospacesector,AI,specificallymachinelearning,hasevolvedtodeliversolutionsintheareasofautonomy,suchasobstacleavoidanceandautomaticvehicletaxiing,aswellasoptimizationofcargoinairplanesthatare

connecteddigitally,andmanyotherareas.Theseadvancements,leveragingdeeplearning,continueprovidingsolutionstotechnologygapsthatwouldotherwisebehardtoachievewithtraditionalapproaches.

Morewidely,usingmodelsthattakeglobalandnationaltrendsanddisruptionsintoaccount,manufacturerscanmakeswiftchangestotheirsupplychaindecisions.Thisallowsthemtobemoreresilienttounexpectedchanges,withmodelsabletoidentifynewshippingpatterns,alteredsupplierchoicesorinventoryshocks.

>HowAreManufacturersTestingAISystems?

AsmanufacturersexpandtheuseofAItechnology,theyarefindingmorerobustwaystoguaranteethatthesetechnologiesaresafeandreliablefortheiremployeesandcustomerstouse.ManycompaniesareapproachingAIthroughthesamekindofprovenrisk-managementframeworksthattheyusefortheirITandcybersecurity

programs.Companiesarealsodevelopingtheirowninternalgovernanceprograms.

Manufacturersareusingtestinggroups,bringingtogetherAI,ITandoperationsprofessionals,toidentifywhere

algorithmsmightbeinaccurateandtovalidatethattheirsystemsmeethighthresholdsofsuccess.WhentestingnewAIsystems,oneshippingandlogisticscompanyfoundthatinternalfacilitysafetyteamsandtheirthird-partytestingorganizationsbothneededtodevelopanewknowledgebaseandupskilltogether.

Inthiswayandothers,manufacturersarebuildingtheirowngovernanceprogramsfordataandAIsystems,

maintainingdataprivacyandconductinginternaltestingbeforenewprogramsaredeployed.Thisistrue

especiallyforheavilyregulatedindustries,suchasautomotive,pharmaceuticalsandaerospace,thatalready

mustmeetmanyofthesafetybenchmarksapplicabletothedevelopmentandtestingofsafeAIsystems.Manyareworkingdirectlywiththegovernmentalreadytodevelopcertificationsforcriticaltechnologiesthatdonot

disrupttheirdeploymentofAI.

>WhatShouldWeDoNow?

ManufacturersarecommittedtotheresponsibledevelopmentanddeploymentofAI.AIhasbecomecritical

tomodernmanufacturing,andAItechnologiesandcapabilitiesar

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论