




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
》orkingSmarter:
HowManufacturersAre
UsingArtificialIntelligence
KeyFindingsandInsightsfrom
Manufacturers
MAY2024
2
WorkingSmarter:
HowManufacturersAreUsingArtificialIntelligence
May2024
KeyFindingsandInsightsfromManufacturers
NationalAssociationofManufacturers
3
>ALetterfromtheChair
Artificialintelligencehasdominatedtheheadlinesinrecentyears,andpeoplearetrulybeginningtograspthepossibilitiesandpowerofthistechnology.ThelaunchofChatGPTandothergenerativeAItoolshasmadethetechnologyevenmore
accessible,puttingitinthehandsofeverydayAmericans.
Manufacturershavebeenattheforefrontofdevelopingandimplementingintelligent
systemsandAItechnologies,includingmachinelearning,deeplearning,natural
languageprocessing,machinevision,digitaltwinsandrobotics.Thishaspositioned
manufacturersuniquelyasbothdevelopersanddeployersofAIinnovations,providinginvaluableinsightsintotheeffectiveandresponsibleuseofthesetechnologies.
AIcanbeaforcemultiplier—andaforceforgood.AtJohnson&Johnson,forexample,AIhasbeenused
effectivelyinanumberofareas,rangingfromthedrugdevelopmentprocesstorestockinghospitals.Ithelpsussortthroughmassiveamountsofdata,yieldinginsightsfortheimprovedhealthandwellnessofpeoplearound
theworld.Itaidsusincreatingtargetedtreatmentsandgettingthemtotherightpatientsattherighttime.Whenweconductclinicaltrials,AIhelpsusmoreefficientlyestablishsafetyandeffectivenessguardrails,whileallowingustoconducttrialsatalargerscale.AIalsogivesusafarstrongermasteryoveroursupplychains.Overall,it
helpsourpeopledoabetterjoboflivinguptoourcommitmentofimprovinghealthcareoutcomesandmakingourtowns,countryandworldabetterplace.
AIfunctionsbestwithhumansasthecoredecision-makerswithinAI-enhancedprocesses.Theseoperators
mustbeknowledgeable,well-trainedandabletoutilizethetechnologysafelyandtoitsfullestpotential.Early
on,Johnson&JohnsondevelopedanethicalAIframework,aswellasadatascienceacademytoenhanceourteams’digitalacumenandequipthemwithAIengagementskills.AsmanufacturersupskillandtrainmoreteammemberstoworkwithAI,thetechnologywillempowerthoseworkerstobemoreinnovativeandproductive.
Asyou’llreadinthispaper,manufacturersofallsizeshavefoundsimilarwaystouseAItoamplifytheir
operationsandliveuptotheirowncommitments.WithAIsupportingus,manufacturerscandosomuchmoretoimprovethequalityoflifeforeveryone.
Giventheimportanceofthisgenerationaltechnology,policymakersmustdevelopsensible,carefullythought-outframeworksforvariousAIapplications—andtheyshouldleanonmanufacturers’yearsofexperiencetoengineerthoseframeworks.WeneedapolicyenvironmentthatsupportsinnovationandgrowthinmanufacturingAI,
becauseitwillbolsterU.S.competitivenessandleadershipinthiscriticalemergingfield.
AllpossiblefuturesformodernmanufacturingintheU.S.involveAI.Thistechnologyisagame-changer,anditwillcontinueprovingitselftobeanessentialpartnerontheshopfloor.ThispaperofferspolicymakersawindowintothefutureofAIinmodernmanufacturing—andaroadmaptohelpusgetthere.
KathrynWengel
ExecutiveVicePresidentandChiefTechnicalOperations&RiskOfficer,Johnson&JohnsonChairoftheBoard,NationalAssociationofManufacturers
4
>KeyInsights
nArtificialintelligencetoolsareusedwidelyacrosstheindustryandarekeytoadvancingmodernmanufacturing.
nManufacturersareconsumers,developersanddeployersofAIthroughouttheirproductionprocesses.
nThepotentialapplicationsforAIinmanufacturingareexpansiveandcanhelpindustryleadersimproveefficiency,productdevelopment,safety,predictivemaintenanceandsupplychainlogistics.
nAIreferstoalargeumbrellaoftechnologiesthatincludemachinelearning,machinevisionanddeeplearning.Thesetoolsallowmanufacturerstomaketheirshopfloorssafer,improveworkexperienceandcreate
innovativeproductsthatsolveglobalchallenges.
nManufacturersareimplementingandtestingAIprogramsinawaythatkeepsworkersasthecentraldriversanddecision-makersforAIprocessesorproducts.
nToremainagloballeaderinadvancingAIandsupportingmanufacturinginnovation,theU.S.shouldtakea
cautiousapproachtoAIregulation,tailoranyregulationtospecificusecasesandrisks,right-sizecompliance
burdens,supportR&Dandnewworkforcepathwaysandensurethatregulatoryframeworksarealignedglobally.
5
>WhatIsAI?
“WeseeAIasakeystrategicenablerfor
oureffectiveness,to
dothingsbetter,fasterandmoreeconomically,whiledelivering
essentialproductstoourcustomers.”
–SreedharSistu,
VicePresident,AIOffers,SchneiderElectric
Innovationiswhatdrivesmanufacturing,andasaresult,
manufacturershavealwaysbeenattheforefrontofnewtechnologies,strivingtooperatemoreefficientlyandeffectively.Nowmanufacturersareleadingintheadoptionanduseofartificialintelligence.AIisa
broadumbrellaterm,definedbytheNationalInstituteofStandards
andTechnologyasa“systemthatcan,foragivensetofobjectives,
generateoutputssuchaspredictions,recommendationsordecisionsinfluencingrealorvirtualenvironments.”1Thesesystemsusedataandhuman-builtalgorithmstosimulatehowhumansperceive,learnand
respondtoquestionsandprompts.AIsystemsareoftenconnectedtoothermachinesandrespondtothedigitalandphysicalworldtosupportprocessesthatcaneitherbeverysimpleorcomplex.2
Whilerecentadvancementsinlargelanguagemodelsandchatbots,suchasChatGPTandGoogleGemini,haveplacedaspotlighton
generativeAItechnology,theseapplicationsrepresentbutafraction
ofthetypesofAIcurrentlyinuse.Infact,manufacturershavebeendevelopinganddeployingintelligent
systemsandAItechnologyformanyyears,intheformofmachinelearninganddeeplearning,natural
languageprocessing,machinevision,digitaltwinsandrobotics,allfurtherexplainedinthefollowingpages.
Theseinnovationsareoftencategorizedunderthebannerof“advancedmanufacturing”or“Manufacturing
4.0.”AIintegrationintomanufacturingprocesseshascontributedalreadytosignificantlyimprovedoperationsandtothedevelopmentofnewproducts.3
AIrepresentsatremendousopportunityforthemanufacturingindustry.AItechnologiescanhelp
manufacturersimprovetheiroperationsbyupgradinghowtheyanalyzelargedatasets,identifyingknowledgegaps,providingsolutionsandenablingteamstodevelopnewefficiencesatscale.WidespreadimplementationofAIacrosstheindustrycouldleadtomoreefficientprocesses,increasedsustainability,moreinnovative
productsandsaferworkplaces.TheseinnovationswillbothgrowtheeconomyandbolsterU.S.global
leadershipinmanufacturing.GiventhevastpotentialofAI,policyapproachestoAIshouldfurtherthe
developmentofthesetechnologiesandsupporttheirresponsibleusebymanufacturersacrossawiderangeofapplications—strengtheninginnovationand,inturn,supportingU.S.competitivenessontheworldstage.
ThisreportreviewshowAIhasevolvedwithinmanufacturingandhowmanufacturersaredevelopingand
deployingAItechnologiestoinnovatewithintheirbusinessoperationsandacrosstheindustry.ManufacturersarealeadingvoiceontheopportunitiespresentedbyAIandhavemuchtoshareabouttheirexperiences.
ThisreportconcludeswithpolicyrecommendationsthatwouldbestequipthemanufacturingindustrytotakeadvantageoftheimmenseopportunitiesAItechnologyhastooffer.TheNAMsupportsapolicyenvironment
forAIthatencouragessafe,responsibledevelopmentwhilepromotingtheinnovativegrowthofthetechnology.
1NationalInstituteofStandardsandTechnology,ArtificialIntelligenceRiskManagementFramework(AIRMF1.0)(Washington,D.C.:
DepartmentofCommerce,2023),1,
/nistpubs/ai/NIST.AI.100-1.pdf
.
2TomCulver,LeeGreenandJimRedden,“PeeringintotheFutureofIntelligentSystems,”Research-TechnologyManagement62,no.3(May2019):21-30,
/doi/abs/10.1080/08956308.2019.1587322
.
3HailiZhang,XiaotangZhangandMichaelSong,“DeployingAIforNewProductDevelopmentSuccess,”Research-TechnologyManagement64,no.5(August2021):50-57,
/doi/full/10.1080/08956308.2021.1942646
.
6
>HowDidWeGetHere?
AIinmanufacturingismadepossiblebytheconnectednatureofmachinesandtoolsinmanufacturing
operations.Widespreaddigitalintegration,usingconnectedsensorsandinstrumentstocollectdataacrossshopfloors,enablesmachinelearning,atypeofAIthatwasdevelopedasearlyasthe1980s.4Amachinelearning
systemanalyzesdataandrecognizespatternstotrainitselftomakedecisionsandperformtasksefficiently.
Deeplearning,anextensionofmachinelearningthatevolvedthroughthe2010s,incorporatesmultiplelayersofreasoninganddataanalysistomimichowthehumanbrainworks.5MachinelearninganddeeplearningarethebasisformostoftheAItoolsmanufacturersuse.AsofOctober2023,74%ofsurveyedmanufacturershad
investedorwereplanningtoinvestinmachinelearning.6
Artificialintelligence:atechnologythatcan,foragivensetofobjectives,generateoutputssuchaspredictions,recommendationsor
decisionsthatemulatehumanbehavior
Machinelearning:amodelthatuses
advancedalgorithmstoanalyzedataandrecognizepatternstotrainitselftomakedecisionsandperformtasks
Deeplearning:asystemthatincorporates
multiplelayersofreasoninganddataanalysistomimichowthehumanbrainworks
GenerativeAI:atoolthatusesdeep
learningtocreatecontent,suchastext,imagesorcode,basedondetected
patternsinlargedatasets
4JimDavis,“PuttingIntelligenceBackintoAI,”ManufacturingLeadershipCouncil(Dec.8,2020),
/putting-intelligence-back-into-ai-17349/?stream=all-news-insights
;
MichaelPlatzandShantonWilcox,“AchievingImpactfromEnd-to-EndDigitalization,”ManufacturingLeadershipJournal(January2023),
/achieving-impact-from-end-to-end-digitization-31586/?stream=ml-journal
.
5“Whatisdeeplearning?,”IBM,accessedJan.30,2023,
/topics/deep-learning
.
6PenelopeBrown,“SURVEY:ManufacturersGoAll-InonAI,ManufacturingLeadershipCouncil(Oct.1,2023),
/survey-manufacturers-go-all-in-on-ai-35350/?stream=ml-journal
.
7
>HowDoManufacturersUseAI?
Manufacturersarecollectorsofknowledge.Theybringtogethertheskillsandideasofpeople,sometimesfromallaroundtheworld,tocreatenewproducts.Thesegoodscanbeassmallandsimpleasaboltoraslarge
andcomplexasanautomobile.Themodernshopfloorisinterconnectedandtechnologicallyadvanced.This
enablesmanufacturerstocollectdataabouttheiroperationsandenhancetheirproductionprocesses.Inshort,thetechnologicalinnovationsofmodernmanufacturingenablemachinestoamplifytheproductivepowerof
manufacturingworkers—andAIisthenextstepinthisinnovativejourney.
In2023,theNAM’sManufacturingLeadershipCouncil,aglobalnetworkofexecutivesinthemanufacturing
industry,conductedsurveysonhowmanufacturersuseAIintheiroperationstoexploresomeofthewaysAIisalreadymakinganimpact.WhenaskedaboutwhytheywereinvestinginM4.0technologiesordigitally
integratedinnovationssuchasAI,respondentspointedtocostreduction,operationalawarenessandprocessoptimization,asshowninFigure1.7Thisincludesvisibilityintooperationsbycollectingandanalyzingdatatodevelopinsightintotheperformanceofamanufacturingprocess,andusingdigitaltechnologyanddatato
determineaprocess’sefficiency,speed,equipmentutilization,materialsusage,waste,etc.,andmakingdecisionsonhowanyofthosefacetscouldbeimproved.
Figure1:WhatAretheMostImportantReasonsYourCompanyInvestsinTransformativeM4.0Technologies?(CheckTopThreeReasons)
72%
51%
41%
32%
22%
21%
19%
14%11%
11%
5%
0%10%20%30%40%50%60%70%80%
ReducecostsandimproveoperationalefficiencyImproveoperationalvisibilityandresponsiveness ImproveprocessoptimizationandcontrolCompensateforlaborshortages
Improvequality
CreatesustainedcompetitiveadvantageImproveassetreliability
Improvespeedtomarket
ImprovecustomerexperienceMitigateimpactfromdemandswingsDon’tknow
Wherepossible,manufacturersdeveloptheirownAItoolstoaccomplishthesetasks.OtherspurchaseAI
productsfromtechnologycompanies.RegardlessofwhethermanufacturersdevelopAItechnologyordeployAItechnology—orboth—theyfindthatAIhelpseasetheburdenofrepetitivetasks,allowingmanufacturingworkerstodevotetheirenergyandtimetomorecomplicatedandforward-thinkingactivitiesandprojects.
7Ibid.
8
AsdisplayedinFigure2,respondentsnotedawiderangeofusesforAIintheiroperations,thetopthreeofwhichweremanufacturingandproduction,inventorymanagementandqualityoperations/R&D.8
ToimplementAI,manufacturersworktoidentifywhichAIsystemisbestsuitedtohelpthemtackletheir
challenges;howtoresponsiblyandtransparentlycollectthedatanecessarytotrainandruntheAImodel;andwheretoimplementAItotransformcurrentprocesses.Inthiscontext,modernmanufacturersviewdataasa
criticalinputthatcanbeleveragedandutilizedtodiscovernewefficiencies.AIishelpingtotransformthatdataanddeploysolutionsatascalenotpossibleforhumansalone.
Figure2:WhichoftheFollowingCorporateFunctionsHaveBeguntheAdoptionofAI?(SelectAllThatApply)
ManufacturingandproductionInventorymanagementQualityoperations
R&DIT/OT
Equipmentmaintenance/installation Supplychain ProductdesignDistribution/logisticsSalesandmarketing
FinannceeHumanresourceess
CustomerserviceandsupportLegal
ProcurementSustainability
39%
33%
24%
24%
21%
17%
11%
11%
9%
7%
7%
6%
4%
3%
3%
3%
0%10%20%30%40%50%
Withthelargeamountsofdatacollectedontheshopfloorandthroughouttheiroperations,manufacturersuseAItodesignproductionprocesses,predictivemaintenanceprogramsandlogisticsdecision-makingmodels,
amongmanyotherexamples.ThesecompaniesarepushingtheboundariesofwhatAIsystemscando.ThisputsmanufacturersinauniquepositiontoguidethedevelopmentoftheAIpolicylandscape.
8DavidBrousell,JeffPumaandPaulTate,TheFutureofIndustrialAIinManufacturing(Washington,D.C.:ManufacturingLeadershipCouncil,
2023),
/wp-content/uploads/2023/06/The-Future-Of-AI-In-Manufacturing-MLC-2023.pdf
.
9
Efficiency
Thecontinued,expandedimplementationofearlyAItechnologies,suchasmachinelearning,hasimproved
manufacturers’efficiency.Greaterefficiencyallowsmanufacturerstoallocateresourcesinamorecost-
effectivemanner,improveshopfloorprocesses,implementmoresustainablepracticesanddiscovernew
opportunitiesforgrowth.IninterviewsconductedbytheNAM,onechemicalproductioncompanystatedthattheapplicationofmachinelearningtodatacollectedfromchemicalreactorsenablesoperatorstomakebetterdecisionsabouthowtooperatethem.TheAImodelalertsoperatorswhenitisoptimaltomakechangesintheprocess,ratherthanmanuallykeepingtrackofallsensorsordependingonaspecificoperationaltimetable.
Humanoperatorsarestillatthecenterofdecision-makingandoperations,butAIhashelpedimprovethereliabilityoftheirprocessesandthequality,deliveryandsafetyoftheirproducts.
“HitachiisfocusedonapplyingAI,machinelearningandrelatedtechnologiestowardaddressingreal-worldchallengesinindustrialandsocietaldomains.
Functionalareasincludemaintenanceandrepair,operationsoptimization,qualityassurance,safetymanagement,supplychainmanagementandautomationand
control,amongothers.Thegoalistheend-to-endoptimizationofkeyindustrialprocesses.”
–ChetanGupta,GMoftheAdvancedAIInnovationCenter,Hitachi,Ltd.andHeadoftheIndustrialAILabatHitachiAmerica
MachinevisionisamorerecentadvancementinAI,enablingindustrialequipmentto“see”bygatheringand
analyzingvisualdatainitsenvironmenttoformconclusions.Almost80%ofMLCsurveyrespondentshad
investedorplannedtoinvestinvisionsystems.9Onelogisticscompanyusesmachinevisiontosortpackages,dependingonAI-enabledrobotstorespondtoandmakedecisionsbasedonever-changingsituationsand
conditionsratherthansimplyrepeatingthesamepatterns.Manycompaniesarealsousingmachinevisionto
performqualitycontrol,quicklyreviewingpartsandmaterialsfordefectsthataremoredifficultforhumansto
detect.Forsomemanufacturers,thishasbeenaparadigmshiftandhasallowedtheirmachinesandprocessestoworkmoreefficientlyandrespondtonewsituationsandproblemsmorequickly.
AImodelscanalsoperformpredictiveanalyticsusingdatacollectedfromdigitallyenableddevices.Aresult
ofthisanalysiscanbepredictivemaintenance,oridentifyingpartsthatarenotperformingefficientlysothat
theycanbereplacedbeforetheybreak.MorethanhalfofMLCsurveyrespondentsstatedthatpredictive
maintenanceisakeyAIapplicationintheiroperations.10Suchefficienciescanpreventunplanneddowntimeforproductionaswellasenhancesustainabilitybyenablingmoreenergy-efficientprocesses,loweringwasteanddecreasingemissions.
9Brown,“SURVEY:ManufacturersGoAll-InonAI.”10Ibid.
10
Safety
“AIgivesustheabilitytocombinedigitalandphysicalteamsandtohelpourpeoplebyreducingrepetitivetasksandphysicalstresswhile
promotingsafety.”
–JoelStenson,SeniorVicePresidentofOperations
Technology,UPS
ManufacturersareinterestedinusingAItoimprovesafety
foremployeesandoperations.OneautomotivemanufacturerisusingAIandmachinevisiontomonitorintersectionsof
productionlanes,lettingworkersknowifaforkliftorother
machineryiscomingaroundthecorner,outsideofthe
peripheryoftheirvision.ThisuseofAIhelpstoprevent
humanmistakesandgreatlyimprovessafetyontheshop
floor.Forindividualworkers,ergonomicassistance,likea
roboticexoskeletonthatcollectsandlearnsfromdataon
thewearer’smovementsandtheenvironment,canenhancehumanstrengthandpreventinjuries.Overtime,thesetoolshavethepotentialtoimproveworkersafety,makejobslessphysicallydemandingandreducehealthcarecosts,whicharekeyconcernsforemployers.
OthercompaniesuseconnecteddevicesandAImodelingtoimprovethecustomerexperience.Infact,47%ofsurveyedmanufacturersplantodeploymorecustomer-facingAItoolsinthenexttwoyears.11Oneautomotivecompanyhasalreadybeguncollectingdatafromtheirnewestvehiclemodelsandalertingcustomerswhen
theAIidentifieschangesintheperformanceofthevehicle,allowinguserstopreventcostly,inconvenientandpotentiallydangerousproblemslater.
ProductDevelopmentandDesign
ResearchershavefoundthatproductdevelopmentcanbenefitfromusingAImodelstolearnfromaccumulateddataandthathigherAIusageinthedevelopmentprocessincreasessuccess.12ManufacturersinmanydifferentindustrysubsectorsareutilizingAItodevelopnewproducts.AsupplierofautomotivepartshascreatedanAI
toolthatprocesseswheelgeometrydata,allowingthecompanytomorequicklydevelopwheeldesignsthatperformbetterandareproducedmoreefficiently.AIallowsthiscompanytobringproductstomarketfaster,
respondtodesignchangesmorequicklyandbetterapplytheknowledgeoftheirengineeringteam,unlockingcontinuousinnovationandlearning.
OnepharmaceuticalcompanysharedthatitisusingAImodelstoidentifynewwaystodevelopmoleculesand
advanceindividualizedtreatmentsfordisease.ThiscompanyisdevelopingtheirownAImodelstofindmorepreciseendpointsfortreatments,whichmakeclinicaltrialssafer,moreeffectiveandwithagreatermarginforsuccess.
Training
Manufacturerswanttokeeptheworkofpeople,notcomputers,atthecenteroftheiroperations.TheingenuityofworkersisakeycomponentinanyAIprocessesorproducts.WhenitcomestoAIinmanufacturing—workersarethedriversanddecision-makers,andAIworkstomaketheirjobseasierandmoreefficient.ManycompanieshavefoundthattheirbestAIoutcomesresultfromenrichingemployees’experienceatwork,thusimproving
theiroutput.AItechnologyisoftenusedtocomplementandaugmenttheworkofhumans,likeaco-pilot.
Thisapproachenhancesworkerefficiencywhilestillprioritizinghumanexperienceandingenuity—ultimately
11Ibid.
12Zhang,ZhangandSong,“DeployingAIforNewProductDevelopmentSuccess.”
11
increasingtrustandconfidenceinAIsystems.13Themosteffective
AImodelsarehuman-centered,allowingthemtolearnandunlearn,
continuouslyimprovingtomeettheneedsoftheirhumanoperators.14
Manufacturersareupskillingtheirworkforceactivelytomeetthe
opportunitiesofAI.Manycompanies,fromlogisticstopharmaceuticals,aresettinguptrainingprogramstohelpemployeesdeveloptheir
confidenceandcompetencyintheuseofAIsystems.Thesetraining
programsincludeafocusonsafetyandcontrol,tolimitriskstoworkersandtoprotectcompanies’intellectualpropertyinthefaceofthe
increasedcybersecurityrisksthatcomefromaninterconnectedshopfloor.
Recruitmentofnewemployeeshasalsochanged.Oneautomotive
suppliernotedthattheyhaveincreasedtheirhiringofthedatascientistsnecessarytobuildandimplementAIsystems.
ThemosteffectiveAI
modelsarehuman-
centered,allowingthemtolearnandunlearn,
continuouslyimprovingtomeettheneedsof
theirhumanoperators.
Attheendofworkers’careers,companiescanuseAIsystemstomanageknowledgeaskeypersonnelenter
retirement.Asof2019,nearlyone-quarterofthemanufacturingworkforcewasover55,15andoneelectrificationandemergingtechnologycompanyisusingAI-utilizingsystemsforknowledgemanagementandtotrainnew
employeesontheskillsoflegacyworkers.TheyarealsousingAImodelstoidentifyfuturechallengesand
predictwhichskillswillbeneeded,identifyinghowmanyemployeeswillneedtobetrainedinthesenewskills.
SupplyChain
ManufacturersareusingAImodelstopredict,preventormitigatedisruptionsintheirsupplychainsandmake
moreinformeddecisionsabouttheirlogisticsplans.Thesetoolsallowtheindustrytobemoreresilienttorisk,
preventproductionstoppagesorshortagesandeffectivelydeliverproductstocustomers.ThisisagrowingareaofAIimplementation,with21%ofsurveyedmanufacturersalreadyusingAIintheirsupplychainmanagement
and60%planningtodeployitinthenext12–24months.16
13JimEuchner,“Littleai,BigAI—GoodAI,BadAI,”Research-TechnologyManagement62,no.3(May2019):10-12,
/doi/full/10.1080/08956308.2019.1587280
.
14Davis,“PuttingIntelligenceBackintoAI.”
15TheManufacturingInstituteandAlfredP.SloanFoundation,TheAgingoftheManufacturingWorkforce(Washington,D.C.,July2019),
/research/the-aging-of-the-manufacturing-workforce/
.
16Brown,“SURVEY:ManufacturersGoAll-InonAI.”
12
Inapplication,AItoolsinthesupplychaincanhelpcompaniesmakethemostoftheirinventories.One
technologyandcomputingcompanybuiltandintegratedanAIprogramthatusedmachinelearningtoassessthecommonpartsacrossdifferentareasoftheiroperations,identifyingwhenandwherepartscouldbeshiftedfromoneareatoanotherasneeded.Becausesparepartshadbeenscrappedpreviouslyifunused,using
machinelearningtoassesshundredsofpartsandgreatlyreducedpotentialwaste—anunfeasibletaskforahumanteam—hassavedthiscompanymillionsofdollarsinreplacementandsourcingcosts.ThecompanyhopestoexpandthisprojecttoincludefurtheradvancementsinAItechnology,includingdeeplearningandgraphneuralnetworks.
Intheaerospacesector,AI,specificallymachinelearning,hasevolvedtodeliversolutionsintheareasofautonomy,suchasobstacleavoidanceandautomaticvehicletaxiing,aswellasoptimizationofcargoinairplanesthatare
connecteddigitally,andmanyotherareas.Theseadvancements,leveragingdeeplearning,continueprovidingsolutionstotechnologygapsthatwouldotherwisebehardtoachievewithtraditionalapproaches.
Morewidely,usingmodelsthattakeglobalandnationaltrendsanddisruptionsintoaccount,manufacturerscanmakeswiftchangestotheirsupplychaindecisions.Thisallowsthemtobemoreresilienttounexpectedchanges,withmodelsabletoidentifynewshippingpatterns,alteredsupplierchoicesorinventoryshocks.
>HowAreManufacturersTestingAISystems?
AsmanufacturersexpandtheuseofAItechnology,theyarefindingmorerobustwaystoguaranteethatthesetechnologiesaresafeandreliablefortheiremployeesandcustomerstouse.ManycompaniesareapproachingAIthroughthesamekindofprovenrisk-managementframeworksthattheyusefortheirITandcybersecurity
programs.Companiesarealsodevelopingtheirowninternalgovernanceprograms.
Manufacturersareusingtestinggroups,bringingtogetherAI,ITandoperationsprofessionals,toidentifywhere
algorithmsmightbeinaccurateandtovalidatethattheirsystemsmeethighthresholdsofsuccess.WhentestingnewAIsystems,oneshippingandlogisticscompanyfoundthatinternalfacilitysafetyteamsandtheirthird-partytestingorganizationsbothneededtodevelopanewknowledgebaseandupskilltogether.
Inthiswayandothers,manufacturersarebuildingtheirowngovernanceprogramsfordataandAIsystems,
maintainingdataprivacyandconductinginternaltestingbeforenewprogramsaredeployed.Thisistrue
especiallyforheavilyregulatedindustries,suchasautomotive,pharmaceuticalsandaerospace,thatalready
mustmeetmanyofthesafetybenchmarksapplicabletothedevelopmentandtestingofsafeAIsystems.Manyareworkingdirectlywiththegovernmentalreadytodevelopcertificationsforcriticaltechnologiesthatdonot
disrupttheirdeploymentofAI.
>WhatShouldWeDoNow?
ManufacturersarecommittedtotheresponsibledevelopmentanddeploymentofAI.AIhasbecomecritical
tomodernmanufacturing,andAItechnologiesandcapabilitiesar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年证券从业资格的知识复习试题及答案
- 版食品代理合同协议
- 考点分析2025年证券从业资格证考试试题及答案
- 企业合同验资业务协议书
- 股票市场波动率的测算与应用考题及答案
- 前瞻性分析2025年特许金融分析师考试试题及答案
- 推动学校文化的传承与创新计划
- 教学活动安排细则计划
- 教你解锁注册会计师试题及答案
- 亲子活动教学安排计划
- 地热资源勘查实施方案
- 曲线绳正法拨道量计算(课堂PPT)
- 公司职工代表大会提案表原创6份
- 普通车床主轴变速箱设计及主轴箱设计说明书
- 经典老歌简谱100首
- 水管管径流速流量对照表
- 速凝剂技术规格书
- GB 1886.333-2021 食品安全国家标准 食品添加剂 磷酸二氢钙(高清版)
- 古代诗歌题材分类鉴赏
- 《猪的育种方案》ppt课件
- 薪酬管理教材部分(doc 52页)
评论
0/150
提交评论