北京市门头沟区2025届高三下学期3月一模数学试题(解析版)_第1页
北京市门头沟区2025届高三下学期3月一模数学试题(解析版)_第2页
北京市门头沟区2025届高三下学期3月一模数学试题(解析版)_第3页
北京市门头沟区2025届高三下学期3月一模数学试题(解析版)_第4页
北京市门头沟区2025届高三下学期3月一模数学试题(解析版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高级中学名校试题PAGEPAGE1北京市门头沟区2025届高三下学期3月一模数学试题一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则()A. B. C. D.【答案】D【解析】由可得,又,所以,即为.故选:D.2.在复平面内,复数对应的点的坐标是,则()A. B. C. D.【答案】B【解析】已知复数对应的点的坐标是,所以.

将代入,可得.即:.故选:B.3.下列函数中,既是奇函数又在上单调递增的是()A. B. C. D.【答案】A【解析】对于A,是奇函数,在上单调递增,满足条件;对于B,是奇函数,因为导函数,所以函数在上单调递减,在上单调递增,所以在上不是单调函数,不满足条件;对于C,的定义域为,不关于原点对称,所以函数为非奇非偶函数,不满足条件;对于D,是奇函数,但在上不是单调函数,不满足条件.故选:A.4.“”是“直线与双曲线只有一个公共点”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【解析】法一:由题意,联立方程可得,当时,即时,方程有一解,即只有一个公共点;当时,,方程有两解,即有两个公共点,不符合题意.所以,直线与双曲线只有一个公共点时,.所以“”是“直线与双曲线只有一个公共点”的充要条件.法二:因为直线过定点,双曲线的右顶点为,如图,根据图象可知,当且仅当直线与双曲线的渐近线平行时,直线与双曲线只有交点.所以“”是“直线与双曲线只有一个公共点”的充要条件.故选:C.5.已知向量,满足,,且,的夹角为,则()A. B. C.5 D.10【答案】C【解析】由题意得.故选:C.6.已知圆,直线,当变化时,若过直线上任意一点总能作圆的切线,则的最大值为()A.0 B. C.1 D.【答案】D【解析】由圆可知圆心,半径;根据题意若过直线上任意一点总能作圆的切线,可知直线和圆相离或相切;因此圆心到直线的距离,解得,因此的最大值为.故选:D7.已知函数,满足,且在区间上具有单调性,则的值可以是()A. B. C. D.【答案】B【解析】因为满足,且在区间上具有单调性,则点和关于点对称,即为函数的对称中心,又由函数的零点为,解得,所以,解得,当时,,即的值可以是.故选:B.8.某纪念塔的一部分建筑结构可抽象为三棱锥,,底面是等腰直角三角形,,顶点到底面的距离为3,则点到平面的距离为()A. B. C. D.【答案】C【解析】因为,且底面是等腰直角三角形,,所以点在平面上的射影为边的中点,在直角三角形中,由勾股定理得,所以,又因为底面是等腰直角三角形,,;设点到平面的距离为,则,所以.故选:C9.已知函数,若既不存在最大值也不存在最小值,则下列,关系中一定成立的是()A. B. C. D.【答案】B【解析】当时,,对其求导可得.因为恒成立,所以在上单调递增.此时.,,则,故在上函数值的取值范围为.当时,,的值域是,所以的值域是.因为既不存在最大值也不存在最小值,所以且,即且.选项A:由且,不能推出,例如,时,,所以A选项错误.选项B:前面已推出,所以B选项正确.选项C:由且,不能得出,例如,时,,所以C选项错误选项D:由且不能得出,例如,时,,所以D选项错误.故选:B.10.已知函数,其中表示不超过的最大整数,例如,,则下列说法正确的是()A.不存在,使得有无数个零点 B.有3个零点的充要条件是C.存在,使得有4个零点 D.存在,使得有5个零点【答案】C【解析】由题意知,是函数的一个零点,时,,可得,令,通过GeoGebra得到函数图象当时;;;当时;;;由函数图象可知的值域为.对于选项A,当时,有无数个零点,故A错误;对于选项B,有3个零点的条件是,故B错误;对于选项C,当时,有4个零点;对于选项D,不存在,使得有5个零点.故选:C.二、填空题共5小题,每小题5分,共25分.11.的展开式中的系数为______________.(用数字作答)【答案】【解析】对于,则式展开式的通项为.要得到项,令,解得.当时,.所以.故的系数为.故答案为:.12.已知抛物线的焦点为,过点且垂直于其对称轴的直线交于点,,若,则焦点到其准线的距离为_________________.【答案】2【解析】抛物线的焦点为,因为过点且垂直于其对称轴的直线交于点,,所以,将,代入抛物线方程,可得,所以,解得,焦点到其准线的距离为.故答案为:.13.在平面直角坐标系中,角以为始边,其终边与单位圆交点的横坐标为,写出一个符合题意的_______________.【答案】(答案不唯一)【解析】由题意,,则或故答案为:(答案不唯一).14.某城市为推动新能源汽车普及,第1年在市区公共区域建设了2万个新能源汽车充电桩,随着新能源汽车保有量快速增长,以及城市对绿色出行基础设施建设的持续投入,每年新建设的充电桩数量比上一年增加20%,按照这样的发展趋势,那么该城市第3年在市区公共区域新建设了_____________万个充电桩;从第1年起,约_____________年内,可使该城市市区公共区域的充电桩总量达到30万个(结果保留到个位).(参考数据:,)【答案】①.2.88②.8【解析】由题意可知第3年新建设万个充电桩;假设第年后充电桩总量达到30万个,则,即,取对数得,即约8年内,可达到要求.故答案为:2.88,815.已知数列满足,,给出下列四个结论:①存在,使得为常数列;②对任意的,为递增数列;③对任意的,既不是等差数列也不是等比数列;④对于任意的,都有.其中所有正确结论的序号是_______________.【答案】②③④【解析】对于①,若为常数列,则,根据递推公式,可得,进而可得,解得,又,故不存在,使得为常数列,故①错误;对于②,对于,由递推公式,可得,所以,,所以,所以数列是递增数列,结论②正确;对于③,若是等差数列,则为常数,可得常数,则可得是常数数列,则,与矛盾,故对任意的,既不是等差数列,若是等比数列,则为常数。根据递推公式,即为常数,则为常数数列,则可得,这与矛盾,所以对任意,不是等比数列;综上所述:对任意的,既不是等差数列也不是等比数列,故③正确;对于④,由,两边平方得,故④正确.故答案为:②③④.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在正方体中,中点,与平面交于点.(1)求证:为的中点;(2)求平面与平面夹角的余弦值.(1)证明:依题意连接,如下图所示:由正方体性质可得,又平面,平面,可得平面,因为与平面交于点,即平面平面,可得,因此,又为中点,可得为的中点;(2)解:以为坐标原点,所在直线分别为轴建立空间直角坐标系,如下图所示:不妨设正方体的棱长为2,可得,即;设平面的一个法向量为,则,令,可得,即;显然平面的一个法向量可以为,因此平面与平面夹角的余弦值为;可得平面与平面夹角的余弦值.17.在中,角,,的对边分别为,,,已知.(1)求;(2)再从以下条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在且唯一确定,求的面积.条件①:,;条件②:,;条件③:边上的高,.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(1)因为,由正弦定理得,,又,所以,得到,又,又,所以,得到,所以.(2)选条件①:,;由(1)知,,根据正弦定理知,所以存在或两种情况,存在,但不唯一,故不选此条件;选条件②:,因为,即,又,所以,所以只有成立,存在且唯一确定,所以的面积为.选条件③:边上的高,;如图所示,边上的高,在中,,即,由(1)知,,根据余弦定理知,,化简得,得(舍去)或,存在且唯一确定,所以的面积为.18.不同AI大模型各有千秋,适配领域也各有所长.为了解某高校甲、乙两个学院学生对两款不同AI大模型是否使用,对学生进行简单随机抽样,获得数据如下表:甲学院乙学院使用不使用使用不使用款40人80人60人20人款70人50人30人50人假设所有学生对,两款大模型是否使用相互独立,用频率估计概率,(1)分别估计该校甲学院学生使用款大模型的概率、该校乙学院学生使用款大模型的概率;(2)从该校甲学院全体学生中随机抽取2人,乙学院全体学生中随机抽取1人,记这3人中使用款大模型的人数为,估计的数学期望;(3)从该校甲学院全体学生中随机抽取2人,记这2人中使用款大模型的人数为,其方差估计值为,从该校乙学院全体学生中随机抽取2人,记这2人中使用款大模型的人数为,其方差估计值为,比较与的大小,(结论不要求证明).解:(1)由表格可知:该校甲学院学生使用款大模型概率为,该校乙学院学生使用款大模型的概率为(2)由题意可知的可能取值为:,则,,,,所以;(3)同第一问,可知该校甲学院学生使用款大模型的概率为,该校乙学院学生使用款大模型的概率为,易知,由二项分布的方差公式可知,,则.19.已知椭圆的一个顶点为,离心率为.(1)求椭圆的方程;(2)过点作斜率为的直线与椭圆交于不同的两点,,直线,分别与轴交于点,,点关于轴的对称点为,求证:四边形为菱形.解:(1)因椭圆顶点为,离心率为,则,所以,故椭圆方程为:;(2)由题,设直线方程为,将直线方程与椭圆方程联立,可得.即得化简得因直线与椭圆交于不同的两点,则.设,由韦达定理.又设,令得;设,令得;又因为.所以,,所以平分,所以四边形为菱形.20.已知函数.(1)当时,求曲线在点处的切线方程;(2)设,讨论函数的单调性;(3)若在定义域上单调递减,求的取值范围.解:(1)当时可得,则,此时,因此切线方程为,即;(2)由可得其定义域为;且,即,显然,当时,,此时在上单调递增;当时,令可得,若,,此时在上单调递增;若,,此时在上单调递减;综上可得,当时,在上单调递增;当时,上单调递增,在上单调递减.(3)若在定义域上单调递减,可得在上恒成立;由(2)可得当时,即在上单调递增,当,可得,显然不合题意;当时,可得在上单调递增,在上单调递减;即在处取得极大值,也是最大值;即恒成立;令,;则,显然当时,,此时在上单调递减;当时,,此时在上单调递增;因此,即,又恒成立,可得,即.所以的取值范围为.21.已知有限数列,其中,.在中选取若干项按照一定次序排列得到的数列称为的一个子列,对某一给定正整数,若对任意的,均存在的相应子列,使得该子列的各项之和为,则称具有性质.(1)判断:,,,,,,是否具有性质?说明理由;(2)若,是否存在具有性质?若存在,写出一个,若不存在,说明理由;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论