




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市长宁区延安中学2025届高三1月期末考前模拟数学试题文试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.4002.已知,则,不可能满足的关系是()A. B. C. D.3.已知单位向量,的夹角为,若向量,,且,则()A.2 B.2 C.4 D.64.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种5.已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为A. B. C. D.6.已知f(x)=是定义在R上的奇函数,则不等式f(x-3)<f(9-x2)的解集为()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)7.已知函数为奇函数,且,则()A.2 B.5 C.1 D.38.函数的最大值为,最小正周期为,则有序数对为()A. B. C. D.9.函数的大致图象为()A. B.C. D.10.已知,,,则的大小关系为()A. B. C. D.11.已知分别为圆与的直径,则的取值范围为()A. B. C. D.12.下列函数中既关于直线对称,又在区间上为增函数的是()A.. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.14.如图,的外接圆半径为,为边上一点,且,,则的面积为______.15.若变量,满足约束条件则的最大值为________.16.若实数,满足,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若不等式的解集为,求的值.(2)若当时,,求的取值范围.18.(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.19.(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.20.(12分)已知函数.(Ⅰ)当时,求函数在上的值域;(Ⅱ)若函数在上单调递减,求实数的取值范围.21.(12分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.22.(10分)设复数满足(为虚数单位),则的模为______.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.本题考查等差数列的基本量计算以及前项和,属于基础题.2.C【解析】
根据即可得出,,根据,,即可判断出结果.【详解】∵;∴,;∴,,故正确;,故C错误;∵,故D正确故C.本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题3.C【解析】
根据列方程,由此求得的值,进而求得.【详解】由于,所以,即,解得.所以所以.故选:C本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.4.B【解析】
利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题5.B【解析】
直线的倾斜角为,易得.设双曲线C的右焦点为E,可得中,,则,所以双曲线C的离心率为.故选B.6.C【解析】
由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.7.B【解析】
由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.8.B【解析】函数(为辅助角)∴函数的最大值为,最小正周期为故选B9.A【解析】
利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,,,.故选:A.本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.10.A【解析】
根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【详解】因为,所以.因为,所以,因为,为增函数,所以所以,故选:A.本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.11.A【解析】
由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题12.C【解析】
根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,,所以不关于直线对称,则错误;B中,,所以在区间上为减函数,则错误;D中,,而,则,所以不关于直线对称,则错误;故选:C.本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.14.【解析】
先由正弦定理得到,再在三角形ABD、ADC中分别由正弦定理进一步得到B=C,最后利用面积公式计算即可.【详解】依题意可得,由正弦定理得,即,由图可知是钝角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面积为.故答案为:.本题考查正弦定理解三角形,考查学生的基本计算能力,要灵活运用正弦定理公式及三角形面积公式,本题属于中档题.15.7【解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.16.【解析】
由约束条件先画出可行域,然后求目标函数的最小值.【详解】由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.故答案为.本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】试题分析:(1)求得的解集,根据集合相等,列出方程组,即可求解的值;(2)①当时,恒成立,②当时,转化为,设,求得函数的最小值,即可求解的取值范围.试题解析:(1)由,得,因为不等式的解集为,所以,故不等式可化为,解得,所以,解得.(2)①当时,恒成立,所以.②当时,可化为,设,则,所以当时,,所以.综上,的取值范围是.18.(1)(2)或.【解析】
(1)圆的方程已知,根据条件列出方程组,解方程即得;(2)设,,显然直线l的斜率存在,方法一:设直线l的方程为:,将直线方程和椭圆方程联立,消去,可得,同理直线方程和圆方程联立,可得,再由可解得,即得;方法二:设直线l的方程为:,与椭圆方程联立,可得,将其与圆方程联立,可得,由可解得,即得.【详解】(1)记椭圆E的焦距为().右顶点在圆C上,右准线与圆C:相切.解得,,椭圆方程为:.(2)法1:设,,显然直线l的斜率存在,设直线l的方程为:.直线方程和椭圆方程联立,由方程组消去y得,整理得.由,解得.直线方程和圆方程联立,由方程组消去y得,由,解得.又,则有.即,解得,故直线l的方程为或.分法2:设,,当直线l与x轴重合时,不符题意.设直线l的方程为:.由方程组消去x得,,解得.由方程组消去x得,,解得.又,则有.即,解得,故直线l的方程为或.本题考查求椭圆的标准方程,以及直线和椭圆的位置关系,考查学生的分析和运算能力.19.(1);(2)4【解析】
(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【详解】(1)当时不等式可化为当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,,,,即而当且仅当:,即,即时等号成立∴,综上实数最大值为4.本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.20.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)把代入,可得,令,求出其在上的值域,利用对数函数的单调性即可求解.(Ⅱ)根据对数函数的单调性可得在上单调递增,再利用二次函数的图像与性质可得解不等式组即可求解.【详解】(Ⅰ)当时,,此时函数的定义域为.因为函数的最小值为.最大值为,故函数在上的值域为;(Ⅱ)因为函数在上单调递减,故在上单调递增,则解得,综上所述,实数的取值范围.本题主要考查了利用对数函数的单调性求值域、利用对数型函数的单调区间求参数的取值范围以及二次函数的图像与性质,属于中档题.21.(1)见解析;(2)(i)(ii)证明见解析【解析】
(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时,的解集为,的解集为,所以的单调增区间为,的单调减区间为;(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年财务决策能力试题及答案
- 股份转让合同股权购买付款协议
- 空运货物运输合同协议
- 微生物检验技术生命周期的考察试题及答案
- 项目管理根本理论解析及答案
- 项目管理中的反馈文化建设与重要性试题及答案
- 品牌定位的动态调整策略计划
- 城市供水设施的智慧化建设计划
- 2025年国际金融理财师历年试题及答案
- 大数据地震预警技术重点基础知识点
- 劳务派遣劳务外包服务方案(技术方案)
- 趣说中国史宋朝篇
- 委托持股协议
- 《新概念英语》第三册课文详解及课后答案
- 拔罐技术操作考核评分标准
- 工业机器人操作与运维实训(高级)-教学大纲、授课计划
- 蛤蟆先生去看心理医生
- 心脏康复护理专家共识PPT
- 汽车充电站生产安全事故隐患清单-有依据
- 浙江省杭州市萧山区第二学期六年级语文期中试题(含答案)
- 《中餐烹饪美学》课后答案
评论
0/150
提交评论