




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE1第十四讲统计与统计案例1.某班对八联考成果进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数起先向右读,则选出的第6个个体编号是()(注:下表为随机数表的第8行和第9行)第8行:63013678591695556719981050717512567358074439523879第9行:33211234297864560782524207443815510013429966027954A.07 B.25 C.42 D.522.(2024课标全国Ⅰ,3,5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入改变状况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图:则下面结论中不正确的是()A.新农村建设后,种植收入削减B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.(2024云南昆明模拟)下图是1951~2025年我国的年平均气温改变的折线图.依据图中信息,下列结论正确的是()A.1951年以来,我国的年平均气温逐年增高B.1951年以来,我国的年平均气温在2024年再创新高C.2000年以来,我国每年的年平均气温都高于1981~2010年的平均值D.2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值4.(2024广东惠州模拟)某商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的销售量与当月平均气温,其数据如下表:月平均气温x/℃171382月销售量y/件24334055则依据表中数据算出线性回来方程y^=b^x+a^中的bA.46件 B.40件 C.38件 D.58件5.为比较甲、乙两地某月11时的气温状况,随机选取该月中的5天,将这5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,给出以下结论:①甲地该月11时的平均气温低于乙地该月11时的平均气温②甲地该月11时的平均气温高于乙地该月11时的平均气温③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差其中依据茎叶图能得到的正确结论的编号为()A.①③ B.①④ C.②③ D.②④6.(2024桂林、百色、梧州、崇左、北海五市联考)下图是2024年第一季度五省GDP状况图,则下列陈述正确的是()①2024年第一季度GDP总量和增速均居同一位的省只有1个;②与去年同期相比,2024年第一季度五个省的GDP总量均实现了增长;③去年同期的GDP总量前三位是D省、B省、A省;④2024年同期A省的GDP总量也是第三位.A.①② B.②③④C.②④ D.①③④7.从编号为0,1,2,…,79的80件产品中采纳系统抽样的方法抽取一个容量为5的样本.若编号为42的产品在样本中,则该样本中产品的最小编号为.
8.如图所示的茎叶图记录了甲、乙两班各六名同学一周的课外阅读时间(单位:时),已知甲班数据的平均数为13,乙班数据的中位数为17,那么x的位置应填,y的位置应填.
9.为了了解某校高三学生的视力状况,随机抽查了该校100名高三学生的视力状况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组数据的频数和为62,设视力在4.6到4.8之间的学生人数为a,最大频率为0.32,则a的值为.
10.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{an},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是.
11.(2024陕西西安八校联考)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费状况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)依据图中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B每天所得劳务费的状况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X>182的概率;(3)依据图中数据估算两公司的每位员工在该月所得的劳务费.12.(2024湖南湘东五校联考)某爱好小组欲探讨昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1月份至6月份每月10号的昼夜温差状况与因患感冒而就诊的人数,得到如下数据:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x/℃1011131286就诊人数y/个222529261612该爱好小组确定的探讨方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回来方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月份与6月份的两组数据,请依据2月份至5月份的数据,求出y关于x的线性回来方程y^=b^x+(3)若由线性回来方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回来方程是志向的,试问该小组所得线性回来方程是否志向?参考公式:b^=∑ni=1xiy参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.13.(2024湖北武汉调研)在一次对人们的休闲方式的调查中,用简洁随机抽样方法调查了125人,其中女性70人,男性55人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外35人主要的休闲方式是运动.(1)依据以上数据建立一个2×2列联表;(2)能否在犯错误的概率不超过0.025的前提下,认为主要的休闲方式与性别有关?(3)在主要的休闲方式为看电视的人中按分层抽样的方法选取6人参与某机构组织的健康讲座,讲座结束后再从这6人中选取2人做反馈沟通,求参与沟通的恰好为2位女性的概率.附:P(K2≥k)0.050.0250.010k3.8415.0246.635K2=n(14.(2024广东广州调研)某基地蔬菜大棚采纳无土栽培方式种植各类蔬菜.过去50周的资料显示,该地每周光照量X(单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.依据统计,该基地的西红柿增加量y(千克)与运用某种液体肥料的质量x(千克)之间的对应数据为如图所示的折线图.(1)依据折线图计算相关系数r(精确到0.01),并据此推断是否可用线性回来模型拟合y与x的关系;(若|r|>0.75,则线性相关程度很高,可用线性回来模型拟合)(2)蔬菜大棚对光照要求较高,某光照限制仪商家为该基地供应了部分光照限制仪,但每周光照限制仪运行台数受每周光照量X限制,并有如下关系:每周光照量X/小时30<X<5050≤X≤70X>70光照限制仪运行台数321对商家来说,若某台光照限制仪运行,则该台光照限制仪产生的周利润为3000元;若某台光照限制仪未运行,则该台光照限制仪周亏损1000元.若商家安装了3台光照限制仪,求商家在过去50周的周总利润的平均值.相关系数公式:r=∑n参考数据:0.3≈0.55,答案精解精析1.D依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体的编号是52.2.A设建设前经济收入为a,则建设后经济收入为2a,由题图可得下表:种植收入第三产业收入其他收入养殖收入建设前经济收入0.6a0.06a0.04a0.3a建设后经济收入0.74a0.56a0.1a0.6a依据上表可知B、C、D均正确,A不正确,故选A.3.D由图可知,1951年以来,我国的年平均气温改变是有起伏的,不是逐年增高的,所以选项A错误;1951年以来,我国的年平均气温最高的不是2024年,所以选项B错误;2012年的年平均气温低于1981~2010年的平均值,所以选项C错误;2000年以来,我国的年平均气温的平均值高于1981~2010年的平均值,所以选项D正确.故选D.4.A由题中数据,得x=10,y=38,回来直线y^=b^x+a^过点(x,y),且b^=-2,代入得a^5.C由茎叶图和平均数公式可得甲、乙两地的平均气温分别是30℃,29℃,则甲地该月11时的平均气温高于乙地该月11时的平均气温,①错误,②正确,解除A和B;又甲、乙两地该月11时气温的标准差分别是s甲=4+1+1+45=2,s乙=9+1+4+45=6.B①2024年第一季度GDP总量和增速均居同一位的省有2个,B省和C省的GDP总量和增速分别居第一位和第四位,故①错误;由图知②正确;由图计算2024年同期五省的GDP总量,可知前三位为D省、B省、A省,故③正确;由③知2024年同期A省的GDP总量是第三位,故④正确.故选B.7.答案10解析样本间隔为80÷5=16.∵42=16×2+10,∴该样本中产品的最小编号为10.8.答案3;8解析∵甲班数据的平均数为13,∴8+9+13+15+(10+x9.答案54解析前三组人数为100-62=38,第三组人数为38-(1.1+0.5)×0.1×100=22,则a=22+0.32×100=54.10.答案13,13解析设等差数列{an}的公差为d(d≠0),a3=8,a1a7=a32=64,即(8-2d)(8+4d)=64,也即2d-d2=0,又d≠0,故d=2,故样本数据为4,6,8,10,12,14,16,18,20,22,平均数为(4+2211.解析(1)甲公司员工A在这10天投递的快递件数的平均数为36,众数为33.(2)设a为乙公司员工B每天的投递件数,则当a=35时,X=140,当a>35时,X=35×4+(a-35)×7,令X=35×4+(a-35)×7>182,得a>41,则a的取值为44,42,所以X>182的概率为410=2(3)依据题图中数据,可估算甲公司的每位员工该月所得劳务费为4.5×36×30=4860(元),易知乙公司员工B每天所得劳务费X的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为11012.解析(1)设选到相邻两个月的数据为事务A.因为从6组数据中选取2组数据共有15种状况,且每种状况都是等可能的,其中,选到相邻两个月的数据的状况有5种,所以P(A)=515=1((3)当x=10时,y^=1507,当x=6时,y^=787,所以,该小组所得线性回来方程是志向的.13.解析(1)2×2列联表如下.主要的休
闲方式性别看电视运动合计女403070男203555合计6065125(2)由题意得K2=125×(因为5.328>5.024,所以能在犯错误的概率不超过0.025的前提下,认为主要的休闲方式与性别有关.(3)主要的休闲方式为看电视的共60人,按分层抽样的方法选取6人,则男性有660×20=2人,可记为A,B,女性有6现从6人中选取2人,总的基本领件有AB,Ac,Ad,Ae,Af,Bc,Bd,Be,Bf,cd,ce,cf,de,df,ef,共15个,选取的2人恰好都是女性的基本领件有cd,ce,cf,de,df,ef,共6个,故所求概率P=615=214.解析(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+5因为∑5i=1(xi-x)(yi∑5i=1(x∑5i=1(y所以相关系数r=∑=625×因为|r|>0.75,所以可用线性回来
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加盟商合作合同范本
- 商业街商铺租赁合同样本
- 版健康体检服务合同协议书样本
- 货物采购代理合同甲方
- 康复医学课件
- 初中数学第1-3章阶段测试卷-2024-2025学年北师大版(2024)数学七年级下册
- Brand KPIs for ready-made-food Eat Happy in Germany-外文版培训课件(2025.2)
- 九年级英语下册 Unit 14 I remember meeting all of you in Grade 7 Section B第4课时(2a-2e)教学设计(新版)人教新目标版
- 2025年度施工员资格考试全真模拟考试试题及答案(共四套)
- 影视后期特效项目教程课件 项目8 大国工匠栏目包装-扭曲、过渡、音频特效
- 2023年一级建造师《管理与实务(通信与广电工程)》考试真题
- 空调系统维保记录表
- 《空间向量基本定理》示范课教学设计【高中数学人教】
- GB/T 25742.4-2022机器状态监测与诊断数据处理、通信与表示第4部分:表示
- GB/T 6417.1-2005金属熔化焊接头缺欠分类及说明
- GB/T 14823.2-1993电气安装用导管特殊要求-刚性绝缘材料平导管
- 北医安全法规考试题
- 2023年宜昌市中医医院医护人员招聘笔试题库及答案解析
- 内部控制建设课件
- 加强施工管理、严格保护环境
- 抗拔桩裂缝计算表格(自动版)
评论
0/150
提交评论