五华初二数学试卷及答案_第1页
五华初二数学试卷及答案_第2页
五华初二数学试卷及答案_第3页
五华初二数学试卷及答案_第4页
五华初二数学试卷及答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

五华初二数学试卷及答案一、选择题(本题共10小题,每小题3分,共30分)1.若a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定答案:B2.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC是直角三角形,其中直角在()A.顶点AB.顶点BC.顶点CD.不能确定答案:C3.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的周长为()A.a+b+cB.2a+2bC.2cD.无法确定答案:A4.若a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的面积为()A.1/2abB.1/2bcC.1/2acD.无法确定答案:D5.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的外接圆半径为()A.aB.bC.c/2D.无法确定答案:C6.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的内切圆半径为()A.aB.bC.cD.无法确定答案:D7.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的外心坐标为()A.(a,b)B.(b,c)C.(c,a)D.无法确定答案:D8.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的重心坐标为()A.(a,b)B.(b,c)C.(c,a)D.无法确定答案:D9.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的垂心坐标为()A.(a,b)B.(b,c)C.(c,a)D.无法确定答案:D10.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的外心、重心、垂心三者的关系为()A.三点共线B.三点共面C.三点不共线D.无法确定答案:A二、填空题(本题共5小题,每小题4分,共20分)11.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的外接圆半径为______。答案:c/212.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的内切圆半径为______。答案:无法确定13.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的面积为______。答案:1/2bc14.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的周长为______。答案:a+b+c15.已知a、b、c是△ABC的三边长,且a²+b²=c²,则△ABC的外心坐标为______。答案:无法确定三、解答题(本题共4小题,共50分)16.已知a、b、c是△ABC的三边长,且a²+b²=c²,求证:△ABC是直角三角形。证明:根据勾股定理的逆定理,若a²+b²=c²,则△ABC是直角三角形。17.已知a、b、c是△ABC的三边长,且a²+b²=c²,求证:△ABC的外心、重心、垂心三点共线。证明:根据三角形的外心、重心、垂心的性质,可以证明三点共线。18.已知a、b、c是△ABC的三边长,且a²+b²=c²,求证:△ABC的外接圆半径为c/2。证明:根据三角形的外接圆的性质,可以证明外接圆半径为c/2。19.已知a、b、c是△ABC的三边长,且a²+b²=c²,求证:△ABC的内切圆半径无法确定。证明:根据三角形的内切圆的性质,可以证明内切圆半径无

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论