




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市越秀区荔湾区2025届高三下学期数学试题期中试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.2.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.43.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()A.400米 B.480米C.520米 D.600米4.在三棱锥中,,,,,点到底面的距离为2,则三棱锥外接球的表面积为()A. B. C. D.5.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则()A. B. C. D.6.已知是定义是上的奇函数,满足,当时,,则函数在区间上的零点个数是()A.3 B.5 C.7 D.97.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面积是()A. B.2C. D.8.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()9.已知函数,对任意的,,当时,,则下列判断正确的是()A. B.函数在上递增C.函数的一条对称轴是 D.函数的一个对称中心是10.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)11.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是()A. B. C. D.12.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3 B. C.6 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则_____14.函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为__________________.15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球的表面上.若球的表面积为则该三棱柱的侧面积为___________.16.已知集合,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)18.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示.据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?19.(12分)已知数列和满足,,,,.(Ⅰ)求与;(Ⅱ)记数列的前项和为,且,若对,恒成立,求正整数的值.20.(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中21.(12分)已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.22.(10分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.2.D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题3.B【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.4.C【解析】
首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积.【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,,,,,,为的中点由球的性质可知:平面,,且.设,,,,在中,,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为.故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.5.C【解析】
求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以.故选:C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.6.D【解析】
根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得,利用周期性可得函数在区间上的零点个数.【详解】∵是定义是上的奇函数,满足,,可得,
函数的周期为3,
∵当时,,
令,则,解得或1,
又∵函数是定义域为的奇函数,
∴在区间上,有.
由,取,得,得,
∴.
又∵函数是周期为3的周期函数,
∴方程=0在区间上的解有共9个,
故选D.【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.7.A【解析】
先根据已知求出原△ABC的高为AO=,再求原△ABC的面积.【详解】由题图可知原△ABC的高为AO=,∴S△ABC=×BC×OA=×2×=,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.8.B【解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.9.D【解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,,函数,对于A,,故A错误;对于B,由,解得,故B错误;对于C,当时,,故C错误;对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.10.D【解析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.11.C【解析】
利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.【详解】由题意,直角三角形的斜边长为,利用等面积法,可得其内切圆的半径为,所以向次三角形内投掷豆子,则落在其内切圆内的概率为.故选:C.【点睛】本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.12.A【解析】
根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
化简得,利用周期即可求出答案.【详解】解:,∴函数的最小正周期为6,∴,,故答案为:.【点睛】本题主要考查三角函数的性质的应用,属于基础题.14.【解析】
令,则,恰有四个解.由判断函数增减性,求出最小值,列出相应不等式求解得出的取值范围.【详解】解:令,则,恰有四个解.有两个解,由,可得在上单调递减,在上单调递增,则,可得.设的负根为,由题意知,,,,则,.故答案为:.【点睛】本题考查导数在函数当中的应用,属于难题.15.【解析】
只要算出直三棱柱的棱长即可,在中,利用即可得到关于x的方程,解方程即可解决.【详解】由已知,,解得,如图所示,设底面等边三角形中心为,直三棱柱的棱长为x,则,,故,即,解得,故三棱柱的侧面积为.故答案为:.【点睛】本题考查特殊柱体的外接球问题,考查学生的空间想象能力,是一道中档题.16.【解析】
利用交集定义直接求解.【详解】解:集合奇数,偶数,.故答案为:.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)2个,证明见解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.【详解】(1)的定义域为,因为,1°当时,在上单调递减,时,使得,与条件矛盾;2°当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,若;若;而时,,要使恒成立,故.(2)原问题转化为方程实根个数问题,当时,图象与图象有且仅有2个交点,理由如下:由,即,令,因为,所以是的一根;,1°当时,,所以在上单调递减,,即在上无实根;2°当时,,则在上单调递递增,又,所以在上有唯一实根,且满足,①当时,在上单调递减,此时在上无实根;②当时,在上单调递增,,故在上有唯一实根.3°当时,由(1)知,在上单调递增,所以,故,所以在上无实根.综合1°,2°,3°,故有两个实根,即图象与图象有且仅有2个交点.【点睛】此题考查不等式恒成立问题、函数与方程的转化思想,考查导数的运用,属于较难题.18.(1)30;(2),比较划算.【解析】
(1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式即可求出结果,最后取近似值即可;(2)分别计算参保与不参保时的期望,,比较大小即可.【详解】解:(1)由,解得.保险公司每年收取的保费为:∴要使公司不亏本,则,即解得∴.(2)①若该老人购买了此项保险,则的取值为∴(元).②若该老人没有购买此项保险,则的取值为.∴(元).∴年龄为的该老人购买此项保险比较划算.【点睛】本题考查学生利用相关统计图表知识处理实际问题的能力,掌握频率分布直方图的基本性质,知道数学期望是平均数的另一种数学语言,为容易题.19.(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得为等比数列,再利用前项和与通项的关系求解的通项公式即可.(Ⅱ)由题可知要求的最小值,再分析的正负即可得随的增大而增大再判定可知即可.【详解】(Ⅰ)因为,故是以为首项,2为公比的等比数列,故.又当时,,解得.当时,…①…②①-②有,即.当时也满足.故为常数列,所以.即.故,(Ⅱ)因为对,恒成立.故只需求的最小值即可.设,则,又,又当时,时.当时,因为.故.综上可知.故随着的增大而增大,故,故【点睛】本题主要考查了根据数列的递推公式求解通项公式的方法,同时也考查了根据数列的增减性判断最值的问题,需要根据题意求解的通项,并根据二项式定理分析其正负,从而得到最小项.属于难题.20.,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】
根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解:解得.所以,该城市驾驶员交通安全意识强的概率根据题意可知,安全意识强的人数有,其中男性为人,女性为人,填写列联表如下:安全意识强安全意识不强合计男性女性合计所以有的把握认为交通安全意识与性别有关.由题意可知分数在,的分别为名和名,所以分层抽取的人数分别为名和名,设的为,,的为,,,,则基本事件空间为,,,,,,,,,,,,,,共种,设至少有人得分低于分的事件为,则事件包含的基本事件有,,,,,,,,共种所以.【点睛】本题考查独立性检验应用问题,也考查了列举法求古典概型的概率问题,属于中档题.21.(1)(2)①见解析②数列不能为等比数列,见解析【解析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学一年级口算题大全(含答案)
- 新野县2024-2025学年五下数学期末统考试题含答案
- 四川省德阳中学江县重点达标名校2024-2025学年初三3月月考语文试题(文理)试题含解析
- 四川旅游学院《动画原理》2023-2024学年第二学期期末试卷
- 天水市清水县2024-2025学年数学五下期末教学质量检测模拟试题含答案
- 天门职业学院《马克思主义伦理学》2023-2024学年第二学期期末试卷
- 山东省冠县2025届初三毕业生复习统一检测试题数学试题含解析
- 山东省枣庄市台儿庄区2024-2025学年三下数学期末检测试题含解析
- 罗定职业技术学院《分子医学实验技术与方法》2023-2024学年第二学期期末试卷
- 江西省重点名校2024-2025学年初三下学期期末英语试题理试题含答案
- 永磁无刷直流电机驱动的研究
- 锂电池起火应急演练
- 2022年四川省阿坝州中考数学试卷
- 【年产20万吨丙烯酸工艺设计13000字(论文)】
- 分布式光伏经济评价规范
- 轨道交通噪声与振动控制技术研究
- 乾坤未定吾皆黑马+高考冲刺百日誓师主题班会
- 安徽省合肥市2024届高三第一次教学质量检查数学试卷及答案
- 2024年四川成都地铁运营有限公司招聘笔试参考题库含答案解析
- 广东省地质灾害危险性评估实施细则(2023年修订版)
- 《非税收入征收管理》课件
评论
0/150
提交评论