2024年中考数学真题分类汇编(全国):专题15 等腰三角形与直角三角形(含勾股定理)(24题)(学生版)_第1页
2024年中考数学真题分类汇编(全国):专题15 等腰三角形与直角三角形(含勾股定理)(24题)(学生版)_第2页
2024年中考数学真题分类汇编(全国):专题15 等腰三角形与直角三角形(含勾股定理)(24题)(学生版)_第3页
2024年中考数学真题分类汇编(全国):专题15 等腰三角形与直角三角形(含勾股定理)(24题)(学生版)_第4页
2024年中考数学真题分类汇编(全国):专题15 等腰三角形与直角三角形(含勾股定理)(24题)(学生版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题15等腰三角形与直角三角形(含勾股定理)(24题)一、单选题1.(2024·四川巴中·中考真题)如图,在中,是的中点,,与交于点,且.下列说法错误的是(

A.的垂直平分线一定与相交于点B.C.当为中点时,是等边三角形D.当为中点时,2.(2024·四川眉山·中考真题)如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为(

)A.24 B.36 C.40 D.443.(2024·四川巴中·中考真题)“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深几何?”这是我国数学史上的“葭生池中”问题.即,,,则(

)A.8 B.10 C.12 D.134.(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为(

)A.5 B.7 C. D.5.(2024·四川南充·中考真题)如图,已知线段,按以下步骤作图:①过点B作,使,连接;②以点C为圆心,以长为半径画弧,交于点D;③以点A为圆心,以长为半径画弧,交于点E.若,则m的值为(

A. B. C. D.6.(2024·山东泰安·中考真题)如图,中,,分别以顶点A,为圆心,大于的长为半径画弧,两弧分别相交于点和点,作直线分别与,交于点和点;以点A为圆心,任意长为半径画弧,分别交,于点和点,再分别以点,点为圆心,大于的长为半径画弧,两弧交于点,作射线,若射线恰好经过点,则下列四个结论:①;②垂直平分线段;③;④.其中,正确结论的个数有(

)A.1个 B.2个 C.3个 D.4个7.(2024·山东烟台·中考真题)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线为的平分线的有(

)A.1个 B.2个 C.3个 D.4个二、填空题8.(2024·辽宁·中考真题)如图,四边形中,,,,.以点为圆心,以长为半径作图,与相交于点,连接.以点为圆心,适当长为半径作弧,分别与,相交于点,,再分别以点,为圆心,大于的长为半径作弧,两弧在的内部相交于点,作射线,与相交于点,则的长为(用含的代数式表示).9.(2024·吉林·中考真题)图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中,于点C,尺,尺.设的长度为x尺,可列方程为.10.(2024·黑龙江大庆·中考真题)如图①,直角三角形的两个锐角分别是40°和50°,其三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作锐角为40°和50°的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是1次操作后的图形.图③是重复上述步骤若干次后得到的图形,人们把它称为“毕达哥拉斯树”.若图①中的直角三角形斜边长为2,则10次操作后图形中所有正方形的面积和为.11.(2024·甘肃兰州·中考真题)如图,四边形为正方形,为等边三角形,于点F,若,则.12.(2024·四川资阳·中考真题)如图,在矩形中,,.以点为圆心,长为半径作弧交于点,再以为直径作半圆,与交于点,则图中阴影部分的面积为.13.(2024·四川雅安·中考真题)如图,在和中,,,将绕点A顺时针旋转一定角度,当时,的度数是.14.(2024·江苏常州·中考真题)如图,在中,,,,D是边的中点,E是边上一点,连接.将沿翻折,点C落在上的点F处,则.15.(2024·山东潍坊·中考真题)如图,在直角坐标系中,等边三角形ABC的顶点的坐标为,点均在轴上.将绕顶点逆时针旋转得到,则点的坐标为.16.(2024·四川遂宁·中考真题)如图,在正方形纸片中,是边的中点,将正方形纸片沿折叠,点落在点处,延长交于点,连结并延长交于点.给出以下结论:①为等腰三角形;②为的中点;③;④.其中正确结论是.(填序号)三、解答题17.(2024·江苏常州·中考真题)如图,B、E、C、F是直线l上的四点,相交于点G,,,.(1)求证:是等腰三角形;(2)连接,则与l的位置关系是________.18.(2024·湖南长沙·中考真题)如图,在中,,,,分别以点A,B为圆心,大于的长为半径画弧,两弧分别交于点M和N,作直线分别交于点D,E,连接(1)求的长;(2)求的周长.19.(2024·湖南长沙·中考真题)如图,点C在线段上,,,.(1)求证:;(2)若,求的度数.20.(2024·青海·中考真题)(1)解一元二次方程:;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.21.(2024·甘肃兰州·中考真题)观察发现:劳动人民在生产生活中创造了很多取材简单又便于操作的方法,正如木匠刘师傅的“木条画直角法”,如图1,他用木条能快速画出一个以点A为顶点的直角,具体作法如下:①本条的两端分别记为点M,N,先将木条的端点M与点A重合,任意摆放木条后,另一个端点N的位置记为点B,连接;②木条的端点N固定在点B处,将木条绕点B顺时针旋转一定的角度,端点M的落点记为点C(点A,B,C不在同一条直线上);③连接并延长,将木条沿点C到点B的方向平移,使得端点M与点B重合,端点N在延长线上的落点记为点D;④用另一根足够长的木条画线,连接,,则画出的是直角.操作体验:(1)根据“观察发现”中的信息重现刘师傅的画法,如图2,,请画出以点A为顶点的直角,记作;推理论证:(2)如图1,小亮尝试揭示此操作的数学原理,请你补全括号里的证明依据:证明:,与是等腰三角形..(依据1______).,(依据2______),.依据1:______;依据2:______;拓展探究:(3)小亮进一步研究发现,用这种方法作直角存在一定的误差,用平时学习的尺规作图的方法可以减少误差.如图3,点O在直线l上,请用无刻度的直尺和圆规在图3中作出一个以O为顶点的直角,记作,使得直角边(或)在直线l上.(保留作图痕迹,不写作法)22.(2024·四川宜宾·中考真题)如图,点D、E分别是等边三角形边、上的点,且,与交于点F.求证:.23.(2024·山东泰安·中考真题)如图1,在等腰中,,,点,分别在,上,,连接,,取中点,连接.(1)求证:,;(2)将绕点顺时针旋转到图2的位置.①请直接写出与的位置关系:___________________;②求证:.24.(2024·辽宁·中考真题)如图,在中,,.将线段绕点顺时针旋转得到线段,过点作,垂足为.

图1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论