泉州工程职业技术学院《机器视觉基础与实践》2023-2024学年第二学期期末试卷_第1页
泉州工程职业技术学院《机器视觉基础与实践》2023-2024学年第二学期期末试卷_第2页
泉州工程职业技术学院《机器视觉基础与实践》2023-2024学年第二学期期末试卷_第3页
泉州工程职业技术学院《机器视觉基础与实践》2023-2024学年第二学期期末试卷_第4页
泉州工程职业技术学院《机器视觉基础与实践》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页泉州工程职业技术学院《机器视觉基础与实践》

2023-2024学年第二学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、图像分类是计算机视觉的基础任务之一。假设要对大量的自然风景图片进行分类,包括山脉、森林、海滩等不同类型,同时图片可能存在不同的拍摄角度、光照条件和季节变化。为了能够准确地对这些图片进行分类,以下哪种特征提取方法与分类算法的组合最为有效?()A.SIFT特征+支持向量机B.HOG特征+决策树C.卷积神经网络自动提取特征+深度学习分类器D.颜色直方图特征+朴素贝叶斯2、在计算机视觉的视觉跟踪与监控应用中,需要对特定目标进行持续的跟踪和监测。假设要对一个在大型商场中移动的可疑人员进行跟踪,同时要应对人群遮挡和环境变化。以下哪种视觉跟踪与监控技术在这种情况下能够提供更可靠的跟踪结果?()A.多目标跟踪算法B.基于深度学习的单目标跟踪C.基于粒子滤波的跟踪D.基于特征匹配的跟踪3、在计算机视觉的图像检索任务中,需要根据用户提供的查询图像找到相似的图像。假设我们有一个大型的图像数据库,以下哪种图像表示方法能够提高图像检索的效率和准确性?()A.基于全局特征的图像表示B.基于局部特征的图像表示C.基于深度学习的图像嵌入表示D.基于颜色直方图的图像表示4、假设要构建一个能够识别人脸表情的计算机视觉系统,用于情感分析和人机交互。考虑到表情的细微变化和个体差异,以下哪种模型架构可能更适合处理这种复杂的任务?()A.多层感知机B.卷积神经网络C.循环神经网络D.生成对抗网络5、在计算机视觉的图像语义分割任务中,假设要处理具有多尺度特征的图像,例如同时包含大物体和小物体的场景。以下关于处理多尺度特征的方法描述,正确的是:()A.使用单一尺度的特征提取网络可以应对多尺度问题,通过调整网络参数即可B.采用多尺度输入图像,分别进行处理后再融合结果,能够有效解决多尺度问题,但计算量大C.空洞卷积在处理多尺度特征时会引入大量的噪声,降低分割精度D.图像语义分割中多尺度问题无法解决,只能尽量避免处理这类图像6、计算机视觉在医疗手术中的应用可以为医生提供辅助和支持。假设在一个微创手术中,计算机视觉用于引导手术器械。以下关于计算机视觉在医疗手术中的描述,哪一项是不正确的?()A.可以通过实时图像分析,为医生提供器械与组织的相对位置和姿态信息B.能够对手术区域进行精准的分割和标注,帮助医生识别关键结构C.计算机视觉在医疗手术中的应用已经非常成熟,不存在任何风险和误差D.可以与机器人手术系统结合,实现更精确和稳定的手术操作7、在计算机视觉中,图像超分辨率重建是提高图像分辨率和质量的技术。以下关于图像超分辨率重建的叙述,不正确的是()A.图像超分辨率重建可以通过插值、基于模型的方法或深度学习方法来实现B.深度学习方法在图像超分辨率重建中能够生成更清晰、逼真的细节C.图像超分辨率重建在医学图像、卫星图像和监控图像等领域有重要的应用D.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制8、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设要对一段视频中的物体运动进行分析,以下关于光流估计的描述,正确的是:()A.稀疏光流估计只计算图像中部分特征点的运动,无法反映整体的运动趋势B.稠密光流估计能够得到图像中每个像素的运动向量,但计算复杂度较高C.光流估计的结果不受光照变化和噪声的影响,具有很高的准确性D.光流估计只能用于分析匀速直线运动的物体,对于复杂的运动模式无法处理9、计算机视觉中的图像去雾是一个具有挑战性的问题。假设要去除一张有浓雾的风景图像中的雾气,以下哪种方法可能需要对大气散射模型有深入的了解?()A.基于深度学习的去雾方法B.基于物理模型的去雾方法C.基于图像增强的去雾方法D.基于滤波的去雾方法10、计算机视觉中的动作识别是对视频中的人体动作进行分类和理解。假设我们要分析一段体育比赛的视频,识别其中运动员的各种动作,以下哪种方法能够有效地捕捉动作的时空特征?()A.基于手工特征和分类器的方法B.基于深度学习的时空卷积网络C.基于光流和轨迹的方法D.基于隐马尔可夫模型的方法11、计算机视觉在工业检测中的应用越来越广泛。假设要检测电子电路板上的微小缺陷,以下哪种图像采集设备可能提供更高的分辨率和精度?()A.普通数码相机B.工业线阵相机C.手机摄像头D.监控摄像头12、在计算机视觉的图像压缩任务中,需要在减少数据量的同时尽量保持图像的质量。假设要对一组高清图像进行压缩,以节省存储空间和传输带宽,同时要求解压后的图像能够满足一定的视觉要求。以下哪种图像压缩算法在这种情况下效果较好?()A.JPEG压缩算法B.PNG压缩算法C.WebP压缩算法D.BPG压缩算法13、计算机视觉中的表情识别用于分析人脸的表情状态。假设要在一个在线教育平台中检测学生的学习状态。以下关于表情识别的描述,哪一项是不正确的?()A.可以通过提取面部肌肉的运动特征来判断表情B.深度学习中的卷积神经网络能够自动学习表情的特征表示C.表情识别能够准确区分细微的表情变化,如困惑和专注D.表情识别不受面部遮挡和光照变化的影响,始终能够准确判断14、计算机视觉在体育赛事分析中的应用可以提供更多的数据和见解。假设要分析一场足球比赛中球员的跑动轨迹和动作。以下关于计算机视觉在体育赛事中的描述,哪一项是不准确的?()A.可以通过对视频的分析,自动跟踪球员的位置和运动轨迹B.能够对球员的动作进行分类,如传球、射门和防守C.计算机视觉在体育赛事分析中的结果可以直接作为裁判的判罚依据,无需人工复查D.可以结合多摄像头的信息,获取更全面和准确的比赛数据15、计算机视觉中的图像配准是将不同时间、不同视角或不同传感器获取的图像进行对齐。假设要将两张拍摄角度不同的卫星图像进行配准,以下关于图像配准方法的描述,哪一项是不正确的?()A.基于特征的图像配准方法通过提取图像中的显著特征,并进行匹配来实现配准B.基于灰度的图像配准方法直接比较图像的灰度值,计算相似性度量来完成配准C.图像配准的精度主要取决于特征提取的准确性和匹配算法的性能D.图像配准总是能够完美地将两张图像对齐,不存在任何误差16、在计算机视觉的视觉跟踪任务中,目标在运动过程中可能会发生形变、遮挡和光照变化等情况。为了提高跟踪的稳定性和准确性,以下哪种策略可能是有效的?()A.模型更新机制B.多特征融合C.抗遮挡处理D.以上都是17、当进行图像的目标计数任务时,假设要统计一张图像中某种物体的数量,例如统计羊群中的羊的数量。以下哪种方法可能更准确地完成计数任务?()A.基于深度学习的目标计数模型B.手动逐个计数C.估计图像中物体的平均大小,然后计算总面积来推算数量D.随机猜测物体的数量18、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设一个工厂需要检测生产线上的零件是否存在缺陷。以下关于工业检测中的计算机视觉的描述,哪一项是不准确的?()A.能够快速准确地检测出零件的表面缺陷、尺寸偏差等问题B.可以通过机器视觉系统对零件进行自动分类和筛选C.工业检测中的计算机视觉系统需要高度的稳定性和可靠性,对环境变化不敏感D.计算机视觉在工业检测中的应用已经非常成熟,不需要人工干预和校验19、计算机视觉中,以下哪种技术常用于图像的超分辨率重建的损失函数?()A.L1损失B.L2损失C.感知损失D.以上都是20、在计算机视觉中,图像分类是一项基础任务。假设我们有一组包含各种动物的图像数据集,需要训练一个模型来准确区分不同的动物类别。在选择图像分类模型时,以下哪种模型架构通常在处理大规模图像数据集时表现出色?()A.传统的机器学习算法,如支持向量机(SVM)B.浅层的卷积神经网络(CNN)C.深度卷积神经网络,如ResNetD.循环神经网络(RNN)二、简答题(本大题共5个小题,共25分)1、(本题5分)解释计算机视觉在殡葬行业中的应用。2、(本题5分)解释计算机视觉中图像超分辨率重建的方法。3、(本题5分)简述图像的形态学处理操作。4、(本题5分)简述图像的显著性检测的目的。5、(本题5分)说明计算机视觉在政务服务中的应用。三、分析题(本大题共5个小题,共25分)1、(本题5分)分析某大学的校园导视系统设计,探讨其如何通过图形、色彩、文字等元素为师生和访客提供清晰的导航,提升校园的便利性。2、(本题5分)研究一款具有未来感的汽车内饰设计,剖析其如何通过材质、色彩、功能布局等元素为驾驶者和乘客提供舒适和便捷的体验。3、(本题5分)解析某电商平台的商品推荐页面设计,探讨其在视觉效果、信息传达、用户个性化推荐方面的表现,以及如何提高用户的购买决策。4、(本题5分)分析某慈善机构的宣传海报设计,研究如何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论