




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题06三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形的相关知识是解决后续很多几何问题的基础,所以是中考考试的必考知识点。在考察题型上,三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。模型01与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)∠ADB=∠ADC=90°BD=CDS△ABD=S△ADCC∠BAD=∠DAC=12AD=DBAE=ECDE=12BCDE模型02与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。全等用符号“≌”表示,读作“全等于”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。(2)全等三角形的性质:全等三角形的对应边相等,全等三角形对应角相等。(3)全等三角形的判定:(1)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)两角分别相等且其中一组等角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)(4)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。模型04三角形相似的判定及综合应用(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.模型05三角形折叠问题探究三角形折叠模型(一)三角形折叠模型(二)三角形折叠模型(三)∠2=2∠C2∠C=∠1+∠2或∠C=12(∠1+∠22∠C=∠2-∠1或∠C=12(∠2-∠1模型06三角形旋转问题探究(手拉手、半角模型)该模型重点分析旋转中的两类全等模型(手拉手、半角),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。(1)手拉手模型:将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。(2)半角模型:半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半。模型特征:等线段,共端点,含半角思想方法:通过旋转(或截长补短)构造全等三角形,实现线段的转化。解题思路:一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论。模型01与三角形有关的线段应用考|向|预|测与三角形有关的线段应用该题型近年主要以选择、填空形式出现,难度系数不大,在各类考试中都以基础或中档题为主。解这类问题的关键是了解三角形的高线、角平分线、中线、中位线的性质,结合三角形的性质及相关判定定理与推论进行解题。答|题|技|巧第一步:根据题意,判定所考察的知识点第二步:结合三角形的高线、角平分线、中线、中位线的性质进行解题;第三步:进行相关计算解决问题例1.(2022·安徽)如图,和是的中线,则以下结论:①;②是的重心;③与面积相等;④过的直线平分线段;⑤;⑥,其中正确的结论有(
)
A.①②③⑤B.①②③④ C.②③⑥ D.①②⑤⑥例2.(2023•辽宁)如图:在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F.下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则BC=AB.正确结论的序号是()A.①③④ B.①②④ C.②③④ D.①②模型02与三角形有关的角的应用考|向|预|测与三角形有关的角的应用该题型主要以选择、填空形式出现,难度系数不大,在各类考试中得分率较高。主要考查了三角形的内角和是定理,三角形的外角定理及结合三角形角平分线的定义,三角形高的定义等看,灵活运用三角形的内角和定理进行角度的计算是解答此题的关键。答|题|技|巧第一步:直接根据两已知角求第三个角;第二步:依据三角形中角的关系,用代数方法求三个角;第三步:在直角三角形中,已知一锐角可利用两锐角互余求另一锐角;第四步:若研究的角比较多,要设法利用三角形的外角性质将它们转化到一个三角形中去.例1.(20023·浙江)如图△ABC,已知BE为∠ABC的平分线.若∠ABC=62°,∠A比∠ABC大10°,求A.134° B.114° C.46° D.103°例2.(2023·吉林)如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=46°,∠
A.22° B.27° C.53° D.63°模型03三角形全等的判定及应用考|向|预|测三角形全等的判定及应用该题型近年考试中综合性较高,在各类考试中以解答题为主。解这类问题的关键是准确迅速的在全等三角形的5种判定方法中,选用合适的方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边。答|题|技|巧第一步:认真分析题目的已知和求证;第二步:分清问题中已知的线段和角与所证明的线段或角之间的联系;第三步:在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形;第四步:最后把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.例1.(2023•上海)如图,点是上任一点,,从下列各条件中补充一个条件,不一定能推出的是A. B. C. D.例2.(2023•安徽)如图,点、分别在、上,与相交于点,连接,如果,,那么图中的全等三角形共有对.模型04三角形相似的判定及综合应用考|向|预|测三角形相似的判定及综合应用该题型主要是在综合性大题中考试较多,一般情况下出现在与圆结合或者利用相似求长度、类比探究题型,具有一定的综合性和难度。解这类问题的关键是熟练应用三角形的判定方法,两组角对应相等,两个三角形相似;两组边对应成比例及其夹角相等,两个三角形相似;三组边对应成比例,两个三角形相似。解答本题的关键是熟练掌握相似三角形的判定定理以及数形结合和方程思想的应用.答|题|技|巧第一步:认真分析题目的已知和求证;第二步:分清问题中已知的线段和角与所证明的线段或角之间的联系;第三步:在应用三角形相似的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形;第四步:最后把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.例1.(2023·山西)如图,,,分别交于点G,H,则下列结论中错误的是(
)A. B. C. D.例2.(2023·安徽)图,,点H在BC上,AC与BD交于点G,AB=2,CD=3,求GH的长.模型05三角形折叠问题探究考|向|预|测与圆的性质有关的证明与计算该题型近年主要以填空及综合性大题的形式出现,一般属于多解型问题,难度系数较大。三角形的折叠问题注意折叠前后对应边相等、对应角相等,在多解题型中,准确画出折叠后的图形是我们解题的关键。结合三角形相关的性质及判定定理与推论和其它几何的相关知识点进行解题。答|题|技|巧第一步:运用折叠图形的性质找出相等的线段或角;第二步:在图形中找到一个直角三角形(选不以折痕为边的直角三角形),然后设图形中某一线段的长为x,将此直角三角形的三边长用数或含有x的代数式表示出来;第三步:利用勾股定理列方程求出x;第四步:进行相关计算解决问题.例1.(2023•山东)对于题目:“如图,点M,N分别是长方形ABCD的边AB和BC上的点,沿MN折叠长方形ABCD,点B落在点B′处,若∠MNB′与∠CNB′两个角之差的绝对值为45°,确定∠BNM的所有度数.”甲的结论是∠BNM=45°,乙的结论是∠BNM=60°.下列判断正确的是()A.甲的结论正确 B.乙的结论正确 C.甲、乙的结论合在一起才正确 D.甲、乙的结论合在一起也不正确例2.(2023•湖北)如图,△ABC中,点D是BC上一点,将△ABD沿着AD翻折,得到△ADE,AE交BC于点F.若AE⊥BC,点D到AB的距离等于()A.DF B.DB C.DC D.CF模型06三角形旋转问题探究(手拉手、半角模型)考|向|预|测三角形旋转问题探究(手拉手、半角模型)该题型主要以解答题的形式出现,综合性较强,有一定难度,本专题重点分析旋转中的两类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。答|题|技|巧第一步:找准旋转中心;第二步:确定以旋转中心为顶点的旋转角,旋转角所在的两个三角形不是全等就相似,全等的常用方法SAS;第三步:学会添加常用辅助线,构造全等三角形解决问题;第四步:数形结合进行分析、解答例1.如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④ B.②③ C.②③④ D.③④例2.(2023·湖南)如图1,在Rt△ABC中,∠B=90°,AB=BC=4,点D,E分别为边AB,BC上的中点,且BD=BE=.(1)如图2,将△BDE绕点B逆时针旋转任意角度α,连接AD,EC,则线段EC与AD的关系是;(2)如图3,DE∥BC,连接AE,判断△EAC的形状,并求出EC的长;(3)继续旋转△BDE,当∠AEC=90°时,请直接写出EC的长.1.(2022•广东)如图,△ABC中,CD平分∠ACB,点M在线段CD上,且MN⊥CD交BA的延长线于点N.若∠B=30°,∠CAN=96°,则∠N的度数为()A.22° B.27° C.30° D.37°2.(2023•贵州)如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87° B.84° C.75° D.72°3.(2023•陕西)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;④DE=CE+2BE.其中正确的有()A.①②③ B.③④ C.①④ D.①③④4.(2023•四川)如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为()A.6 B.5 C.4 D.35.(2023•重庆)如图,在边长为6的正方形内作,交于点,交于点,连接,将绕点顺时针旋转90°得到,若,则的长为.6.(2023·山东)如图,中,点在上,,若,,则线段的长为.7.(2023·上海)等边中,点在内,点在外,且,,问是什么形状的三角形?试说明你的结论.8.(2022·安徽)如图,在△ABC中,D为BC边上的一点,且AC=,CD=4,BD=2,求证:△ACD∽△BCA.9.(2023•西安)如图,在△ABC中,∠B=42°,∠C=68°,点E为线段AB的中点,点F在边AC上,连接EF,沿EF将△AEF折叠得到△PEF.(1)如图1,当点P落在BC上时,求∠BEP的度数;(2)如图2,当PF⊥AC时,求∠AEF的度数.10.(2023•江苏)已知直线MN与PQ互相垂直,垂足为O,点A在射线OQ上运动,点B在射线OM上运动,点A、B均不与点O重合.【探究】如图1,AI平分∠BAO,BI平分∠ABO.①若∠BAO=40°,则∠ABI=25°.②在点A、B的运动过程中,∠AIB的大小是否会发生变化?若不变,求出∠AIB的度数;若变化,请说明理由.【拓展】如图2,AI平分∠BAO交OB于点I,BC平分∠ABM,BC的反向延长线交AI的延长线于点D.在点A、B的运动过程中,∠ADB的大小是否会发生变化?若不变,直接写出∠ADB的度数;若变化,直接写出∠ADB的度数的变化范围.1.如图,AE是△ABC的中线,点D是BE上一点,若BD=5,CD=9,则CE的长为()A.5 B.6 C.7 D.82.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,下列结论不一定成立的是()A.BC=2CE B. C.∠AFB=90° D.AE=CE3.如图,在△ABC中,AF是高,AD平分∠BAC,∠BAC=80°,∠C=60°,则∠DAF的度数是()A.10° B.15° C.20° D.30°4.(2023•大同)如图,P是△ABC内一点,连接BP,CP,已知∠1=∠2,∠3=∠4,∠A=100°,则∠BPC的度数为()A.110° B.120° C.130° D.140°5.(2023·江苏)如图,在中,,,点在的延长线上,,,则()A. B. C. D.6.(2023·广东)如图,在等边三角形中,E为上一点,过点E的直线交于点F,交延长线于点D,作垂足为G,如,,则的长为(
)A. B. C. D.7.如图,中,,,的平分线与的垂直平分线交于O,将沿(E在上,F在上)折叠,点C与O点恰好重合,则的度数为(
)
A. B. C. D.8.如图,等边的边长为6,D是的中点,E是边上的一点,连接,以为边作等边,若,则线段的长为(
)A. B. C. D.9.(2023·四川)如图,为线段上一动点(不与点,重合),在同侧分别作正三角形和正三角形,与交于点,与交于点,与交于点,连接.以下四个结论:;;;连接,则.恒成立的结论有()A. B. C. D.10.添加辅助线是很多同学感觉比较困难的事情.如图1,在Rt△ABC中,∠ABC=90°,BD是高,E是△ABC外一点,BE=BA,∠E=∠C,若DE=BD,AD=16,BD=20,求△BDE的面积.同学们可以先思考一下…,小颖思考后认为可以这样添加辅助线:在BD上截取BF=DE,(如图2).同学们,根据小颖的提示,聪明的你可以求得△BDE的面积为.11.如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,点E为BC上一点,连接AE,∠BAE=∠CAD,连接DE.下列结论中正确的是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省青桐鸣2024-2025学年高二下学期3月联考 数学人教版【含答案】
- 潍坊食品科技职业学院《互动光媒与空间》2023-2024学年第一学期期末试卷
- 山东省临沂市临沂市蒙阴县达标名校2025年中考物理试题命题比赛模拟试卷(13)含解析
- 江西科技师范大学《万物互联的通信时代》2023-2024学年第二学期期末试卷
- 内蒙古机电职业技术学院《典型优化问题的模型与算法》2023-2024学年第二学期期末试卷
- 山西省临汾市古县2024-2025学年数学三下期末调研试题含解析
- 嘉兴南洋职业技术学院《BIM技术与应用C》2023-2024学年第二学期期末试卷
- 上海市上外附中2024-2025学年高三第一次段考物理试题含解析
- 厦门市重点中学2024-2025学年招生全国统一考试仿真卷(十二)-高考英语试题仿真试题含解析
- 江苏省南京玄武区重点中学2025届初三英语试题下学期第一次月考试题含答案
- 《中外建筑史》课程标准
- 这个杀手不太冷解析
- 造口袋技术要求
- 国家开放大学(江西)地域文化(专)任务1-4试题及答案
- QCR 409-2017 铁路后张法预应力混凝土梁管道压浆技术条件
- 南师地信培养方案
- 采购工作调研报告(3篇)
- 10KV高压开关柜操作(培训课件PPT)
- 希尔国际商务第11版英文教材课件完整版电子教案
- 《学弈》优质课一等奖课件
- 2023年6月大学英语四级考试真题(第1套)(含答案)
评论
0/150
提交评论