




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省封丘县第一中学2025届高三5月阶段性诊断考试(二模)数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于函数,有下述三个结论:①函数的一个周期为;②函数在上单调递增;③函数的值域为.其中所有正确结论的编号是()A.①② B.② C.②③ D.③2.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.3.过点的直线与曲线交于两点,若,则直线的斜率为()A. B.C.或 D.或4.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.5.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④6.函数的值域为()A. B. C. D.7.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或48.已知数列的前n项和为,,且对于任意,满足,则()A. B. C. D.9.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过10.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.11.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.的展开式中含的项的系数为()A. B.60 C.70 D.80二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥的四个顶点都在球O的球面上,,,,,E,F分别为,的中点,,则球O的体积为______.14.已知,,则与的夹角为.15.已知向量,且,则实数的值是__________.16.已知集合,其中,.且,则集合中所有元素的和为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100cm,试判断该零件是否属于“不合格”的零件.18.(12分)已知等比数列,其公比,且满足,和的等差中项是1.(Ⅰ)求数列的通项公式;(Ⅱ)若,是数列的前项和,求使成立的正整数的值.19.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.20.(12分)(1)求曲线和曲线围成图形的面积;(2)化简求值:.21.(12分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.22.(10分)已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
①用周期函数的定义验证.②当时,,,再利用单调性判断.③根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【详解】因为,故①错误;当时,,所以,所以在上单调递增,故②正确;函数的值域等价于函数的值域,易知,故当时,,故③正确.故选:C.【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.2.B【解析】
由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.3.A【解析】
利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.4.A【解析】
由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.5.C【解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.6.A【解析】
由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【详解】,,,因此,函数的值域为.故选:A.【点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.7.C【解析】
对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.8.D【解析】
利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可.【详解】当时,.所以数列从第2项起为等差数列,,所以,,.,,.故选:.【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题.9.D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.10.D【解析】
根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.11.A【解析】
计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.12.B【解析】
展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为.故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
可证,则为的外心,又则平面即可求出,的值,再由勾股定理求出外接球的半径,最后根据体积公式计算可得.【详解】解:,,,因为为的中点,所以为的外心,因为,所以点在内的投影为的外心,所以平面,平面,所以,所以,又球心在上,设,则,所以,所以球O体积,.故答案为:【点睛】本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,属于中档题.14.【解析】
根据已知条件,去括号得:,15.【解析】∵=(1,2),=(x,1),则=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.点睛:由向量的数乘和坐标加减法运算求得,然后利用向量共线的坐标表示列式求解x的值.若=(a1,a2),=(b1,b2),则⊥⇔a1a2+b1b2=1,∥⇔a1b2﹣a2b1=1.16.2889【解析】
先计算集合中最小的数为,最大的数,可得,求和即得解.【详解】当时,集合中最小数;当时,得到集合中最大的数;故答案为:2889【点睛】本题考查了数列与集合综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)66.5(2)属于【解析】
(1)利用频率分布直方图的平均数公式求解;(2)求出,即可判断得解.【详解】(1)(2)所以该零件属于“不合格”的零件【点睛】本题主要考查频率分布图中平均数的计算和应用,意在考查学生对这些知识的理解掌握水平.18.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(Ⅱ),由数列的错位相减法求和可得,解方程可得所求值.【详解】(Ⅰ)等比数列,其公比,且满足,和的等差中项是即有,解得:(Ⅱ)由(Ⅰ)知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题.19.(1)(2)【解析】试题分析:(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系.点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理.存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备.(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性.20.(1)(2)【解析】
(1)求曲线和曲线围成的图形面积,首先求出两曲线交点的横坐标0、1,然后求在区间上的定积分.(2)首先利用二倍角公式及两角差的余弦公式计算出,然后再整体代入可得;【详解】解:(1)联立解得,,所以曲线和曲线围成的图形面积.(2)∴【点睛】本题考查定积分求曲边形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- qq个人借款合同范本
- 物流运输托运合同范本
- 田径运动推广与发展计划
- 物资捐赠合同
- 新底旅行社导游个人计划
- 不锈钢焊管公司商业计划书
- 高处作业风险评估技术措施
- 下学期语文教学工作计划
- 物流行业请示文书的撰写规范与范文
- 城市更新项目拆除安全管理措施
- GA/T 1323-2016基于荧光聚合物传感技术的痕量炸药探测仪通用技术要求
- 跨太平洋伙伴关系协议(TPP)
- 流浪动物救助中心犬粮公开招投标书范本
- 初中数学人教九年级上册第二十一章 一元二次方程 解一元二次方程-配方法PPT
- 《气象灾害预警信号》课件
- 无机保温砂浆外墙外保温系统施工工艺课件
- 矿井维修电工技能鉴定考试题(高级工)
- 高中语文《祝福》“谁是凶手”系列之祥林嫂死亡事件《祝福》探究式学习(教学课件) 课件
- 电子商务税收法律问题
- 水平泵房水泵联合试运转方案及安全技术措施
- 中国政法大学社会主义市场经济概论重点归纳及复习试题(杨干忠版)
评论
0/150
提交评论