




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
KPMGglobaltechreport—industrialmanufacturing
insights
Interoperability,hybridmodelsandAI
innovationarethebattlegroundsfordigitalexcellenceinindustrialmanufacturing
KPMG.MaketheDifference.
KPMGInternational|
IMhasabove-averageTheroadaheadforMethodologyHowKPMGcanhelp
KeyfindingsManufacturing’sproactive
datamaturityindustrialmanufacturing
IMexcelsat
achievingAIROI
andprogressivespirit
Executivesummary
Executivesummary
Intherapidlyevolvinglandscapeofindustrialmanufacturing(IM),
organizationsareincreasinglyrecognizingtheimperativeofdigital
transformationtoenhanceoperationalefficiency,qualitycontrol,andsustainability.TheKPMGglobaltechreporthighlightsthatindustrialmanufacturingfirmsareattheforefrontofthistransformation,
showcasingthehighestlevelsofdigitalmaturityacrossvarious
technologycategoriescomparedtoothersectors.Thisreport
servesasacriticalresourceforunderstandingthecurrentstateofdigitaladoptioninindustrialmanufacturingandthestrategicstepsnecessaryforcontinuedadvancement.
TheresearchconductedbyKPMGsurveyed2,450executives
from26countries,including368leadersfromtheindustrial
manufacturingsector.Thefindingsrevealthat76percentof
industrialmanufacturingfirmsexpressastrongwillingnessto
embracecutting-edgetechnology,thehighestamongallsectors
surveyed.Notably,thesectorexcelsinAIadoption,with34percentoforganizationsachievingareturnoninvestment(ROI)frommultiple
AIusecases.However,thereportalsoidentifiessignificantmaturitygapsinareassuchassupplychain,procurement,andfinance
functions,whichhinderthefullrealizationofdigitalpotential.
Toaddressthesechallengesandcapitalizeontheopportunities
presentedbydigitaltransformation,severalrecommendationsemergefromthereport.First,organizationsshouldfocusonenhancingtheirdatastrategiestohelpensureseamlessintegrationandanalysis
acrossdisparatesystems.ThisiscrucialforunlockingthefullpotentialofAIandachievingdata-leddecision-making.
Second,upskillingtheworkforceisessentialtohelpbridgetheskillsgapexacerbatedbytheriseofAI.Trainingprogramsshouldtarget
analyticaldecision-makingandfosteradata-centricculture,enablingemployeestoleveragereal-timedataeffectively.Furthermore,
organizationsmustprioritizethedevelopmentofrobustcybersecuritymeasurestoprotectinternaldatanetworks,especiallyastheybegintosharedatainrealtimewithexternalpartners.
KPMGglobaltechreport—industrialmanufacturinginsights
©2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Lastly,fosteringacultureofinnovationandagilitywillbevitalformeeting
evolvingclientexpectationsregardingleadtimesandcustomization.By
investinginprocessesthatelevatethevoiceofthecustomer,manufacturers
cangaininsightsthatdrivenewproductlinesandrevenuestreams.
2
©2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
IMhasabove-averageTheroadaheadforMethodologyHowKPMGcanhelp
KeyfindingsManufacturing’sproactive
datamaturityindustrialmanufacturing
IMexcelsat
achievingAIROI
andprogressivespirit
Executivesummary
Keyfindings
Manufacturing’sproactiveandprogressivespiritispropellingitsdigitalmaturity
Outoftheeightsectorspolled,manufacturingorganizationsaremostlikelytobeinthehigheststageofstrategicmaturityinthemajorityoftheninetechcategoriesmeasured.And
cutting-edgetechnology—thehighest proportionofallsectorssurveyed.
76%
ofindustrialmanufacturingfirmssaytheirworkforcehasanappetitetoembrace
ThesectorexcelsatachievingAIROI,butdisconnects
preventfurtherprogress
ManufacturingisoneofthethreesectorswhereorganizationsaremostlikelytobeatthemostmaturephaseofAIadoption,with
investment(ROI)inseveralAIusecases.
34%
alreadyachievingreturnon
80%
ofrespondentssayintheirleadershiproletheyempowertheirorganizationtostrategicallyinnovatesotheycancapitalizeonmarkettrendswithAI.
Whileithasabove-averagedatamaturity,thesectorcontinuestoholditselftohighstandards
Industrialmanufacturingperformsabovethecross-sectoraverageinthenumberofitsorganizationsthatareinour
toptwolevelsofdatamaturity.
KPMGglobaltechreport—industrialmanufacturinginsights3
IMhasabove-averageTheroadaheadforMethodologyHowKPMGcanhelp
Manufacturing’sproactive
andprogressivespirit
datamaturityindustrialmanufacturing
Executivesummary
Keyfindings
IMexcelsat
achievingAIROI
Manufacturing’sproactiveandprogressivespiritispropellingitsdigitalmaturity
Forthesecondyearrunning,industrial
manufacturingissettingthepacefordigital
transformation.Outofthesectorssurveyed,itis
theonewhoseorganizationsaremostlikelytobeinthehigheststageofstrategicmaturityinsixoutoftheninetechcategoriesmeasured.
Inthisstage,whichwecall‘proactive,’organizationshavesuccessfullydesignedandtestedastrategicvision,achievedleadershipfunding,andare
implementingthatstrategywhileadaptingittomarketdevelopments.
Inallninetechnologycategories,industrialmanufacturingisaheadofthecross-sectoraverageintermsoftheproportionoforganizationsintheproactivestage.
XaaStechnologies(includingpubliccloudormulti-cloud)
Cybersecurity
AIandautomation(includinggenerativeAI)
Dataandanalytics
Moderndelivery(includinglowcode/nocode)
Edgecomputing
Web3(includingblockchainandtokenization)
Quantumcomputing
VR/AR/XR(includingMetaverse)andspatialcomputing
35%
39%
30%
38%
31%
37%
28%
35%
26%
31%
25%
30%
25%
28%
22%
26%
24%
26%
AverageacrossallsectorsIndustrialmanufacturing
Q:Howwouldyoudescribeyourorganization’spositiontodayineachofthefollowingareas?[Thoseanswering‘Weareproactiveinprogressingagainstourstrategyandarecontinuallyevolving’]
Source:KPMGglobaltechreport2024
KPMGglobaltechreport—industrialmanufacturinginsights4
IMhasabove-averageTheroadaheadforMethodologyHowKPMGcanhelp
KeyfindingsManufacturing’sproactive
datamaturityindustrialmanufacturing
IMexcelsat
achievingAIROI
andprogressivespirit
Executivesummary
Strivingfordigitalmaturityandacultureof
innovationisacontinualgoalofandchallengeforourindustrialmanufacturingclients.Todaywe’rehelpingthemarchitectandimplement
strategiesthatembraceAI,machinelearninganddatatransformation,butwithaconcurrentfocusonhowtheirhumantalentcanthriveinsuchenvironments.Bothelementsareequallyimportanttotheirlong-termsuccess.
ClaudiaSaran
HeadofIndustrialManufacturingKPMGintheUS
Thismaturityisunderpinnedbyacultureoftechenthusiasm:
76percentofindustrialmanufacturingfirmssaytheirworkforce
hasanappetitetoembracecutting-edgetechnology—thehighestproportionofallsectorssurveyed.
Themanufacturingsectorappearstobetakingamorecomprehensiveapproachtoitstechnologyevaluation.Thisyear,executivesaredrawingonawiderrangeofsourcestoinformtheirinvestmentdecisions.
Thatsaid,thedrivershaveshiftedintermsofwhichhasthestrongestinfluenceontechchoices.While“followingcompetitors”isstillatopdecisiondriver(85percent)in2024,ithasfallentosecond,behind
“lookingtothird-partyguidance”(89percent).
Thesetactics,pairedwiththesector’sproactiveandprogressivespirit,appeartobepayingoff.
72%
ofindustrialmanufacturing
execssaythattheir
organizationissatisfiedwith
thevaluegeneratedbytheir
techinvestments,whichis
abovethecross-sectoraverage.
AccordingtoSaurabhBhatnagar,Partner,IndustrialAutomation,
IntelligenceandDigitalization,KPMGinIndia,meetingclient
expectationsaroundleadtimesandcustomizationisaprimeareaforthesectortogeneratevaluefromtechnologies.
“Clients’lead-timeexpectationsarebecomingshorterbythe
day,”saysBhatnagar.“Themarketrequiresmoreagile,responsiveproductioncapabilities—fromthesourcingofrawmaterialstothedownstreamsupplyofgoods.”
Asproductionspecificationsbecomemorecomplexandbespoke,manyorganizationsareturningtodigitalinterventions,systems,
processesandcontrolstobringcustomization,reliabilityandspeedintoproductioncycles.Theseupgradesshouldalsoextendto
operationalworkflowsinsupplychain,procurement,sales,andfinancefunctions,amongotherareas.
“Thevaluechainofindustrialmanufacturingisbeingconnectedandenhancedbydigitalfeatures,”saysBhatnagar.“Thishybridmodelismakingtheentirevaluechainfaster,informed,moredisciplinedandagileinrespondingtomarketneeds.”
Theseefficiencygainsarealsohelpingtoimprovetheenergy
efficiencyofproductionprocesses,accordingtoBhatnagar,for
instanceinreducingtheidletimeofmachinesorreducingbatch
cycletimesofcertainotherprocesses.Here,AIandmachinelearning(ML)areplayingcrucialrolesinfindingmoresustainableandgreen
operationalstrategiesformanufacturerstodeploy.
KPMGglobaltechreport—industrialmanufacturinginsights5
©2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Executivesummary
Keyfindings
Mfis’rtitive
Theroadaheadfor
industrialmanufacturing
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
HowKPMGcanhelp
Methodology
ThesectorexcelsatachievingAIROI,butdisconnectspreventfurtherprogress
IndustrialmanufacturingistheleadingsectorinAIadoption.ItisoneofthethreesectorsmostlikelytobeatthemostmaturephaseofAIadoption,with34percentsecuringROIonseveraloftheirAIusecases.But,whiletherearepocketsofsuccess,thesectorneedstoaddresscriticalgapsthatpreventitfromaccessingthefullpotentialofAI,includingbutnotlimitedtoimprovingdata-basedpredictions,optimizingproducts,augmentinginnovation,enhancingproductivityandefficiency,andloweringcosts.
ProportionofsectorsatthehigheststageofAImaturity
28%29%
Tech
Retailandconsumerpackagedgoods
34%34%
34%27%
32%30%
LifesciencesIndustrialmanufacturing
Healthcare GovernmentFinancialServicesEnergy
Source:KPMGglobaltechreport2024
OneoftheprominentAIusecasesinthesectorisusingpredictivemaintenancetoenhanceequipmentreliability.Performance
diagnosticsAI,alongsidestrategicdatagenerationandstorage,allowsworkerstoanalyzereal-timedatafromvariousmachinecomponents.Thishelpsthemtomakeinformeddecisionsaboutequipment
functionality,performanceandreliability.Also,organizationsare
applyingAIandMLimagerecognitiontechnologiestoevaluate
thequalityofafinishedproducttoinforminterventionsthatwill
improvelaterbatches.FirmsarealsousingAIandMLtoupgradetheenvironmentalefficienciesoftheirequipmentasESGtargetsbecomemoreimportantacrossthesector.
AnotherproductiveusecaseishowthesectorisusingAItoaddresstalentshortages.Fourinfivemanufacturingexecutivessaythat
AIisfillingskillsgapsamongknowledgeworkers—gapsthathadpreviouslypresentedamajorchallenge.
Bhatnagaradvisesthat,asindustrialmanufacturersincorporateAI
andMLintotheirbusinessmodels,upskillingprogramsshouldtargetanalyticaldecision-makingandsciencetechnologyskills,aswellascreatingadata-centricculture.
KPMGglobaltechreport—industrialmanufacturinginsights6
©2025CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.
Executivesummary
Keyfindings
Mfis’rtitive
Theroadaheadfor
industrialmanufacturing
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
HowKPMGcanhelp
Methodology
ofindustrial
80%
manufacturerssayAIissavingthemtime
andallowingthemtobemoreproductive
andfocuson
higher-valueactivities.
“So,factoryworkerscanmakebetterreal-timedecisionsonthe
groundbasedondatathat’sbeingthrownatthem,”saysBhatnagar.“[Factory]floorworkersshouldtaketheleadonthedecisionsthatAIandMLarenotreliableenoughtomakerightnow.BeforeAI,floor
workersmade30to40decisionsaday.Now,theyjustneedtofocuson,say,10extremelycritical,high-valuedecisions.”
IntermsofotherAIusecasesatplayinthesector,therapid
developmentofindustrialandprocesscontrolapplications
underpinnedbyAIpackages,low-costcomputerhardwareand
graphical-user-interfacetechnologyhasledtotheemergence
ofvirtualinstrumentation.Alsoknownas‘softsensors,’virtualinstrumentationactsasasubstituteforphysicalsensorsand
combinesreal-timedata,digitaltechandAI-backedmathematicalmodelstoestimateproductquality.
Thesesoftsensorsprovidemeasurementsatpointsinproductionlineswhereitisimpossibletoinstallaphysicalsensorduetoprohibitive
costsorharshoperationalconditions.Theycombinemultiplereal-timedatasourcesofprocessvariables—suchaswaterflowrates,temperatures,pressureandspeedoftravelonaconveyor—andconvertthemintoanumbertoforecastthequalityofaproduct.
Forinstance,ratherthanwaitingtoevaluatebatchqualityattheendoftheproductionprocess,onelargeintegratedsteelmanufacturingplantisdeployingsoftsensorsatallstagesofitsmanufacturing
cycle.Thisend-to-endmonitoringprovidesopportunitiesfor
proactiveinterventionsthatcanpreservethestabilityofproductionandminimizethepresenceofcontaminantsthatcouldcause
batchestoberejected.“Thissavestheplantfromwasting
productioncapacityandenergyonproducingoff-specmaterials,”saysBhatnagar.
Whiletheseadvancedengineeringsystemsanddesign
methodologiesarecrucialtoinnovation,theinfluenceoftheseAI
usecasesisoftenrestrictedbyconnectivitygapsbetweensystemsanddatasets,saysMartinKaestner,TechnologyLeader,IndustrialManufacturing,KPMGintheUS.
“ThetruepotentialofAIisrealizedwhendatafromdisparate
systems,suchascustomerrelationshipmanagementand
procurementplatforms,isaggregatedandanalyzedholistically,”
saysKaestner.“Thisisparticularlycriticalinsectorssuchas
aerospaceanddefense,whereorganizationsoftenpossesssomeofthebest-engineeredproducts,yettheystruggletoidentifycriticalgapsintheiroperationalframeworksbecauseofsilos.”
“TheinabilitytosynthesizedataacrossvariousplatformsinmodernmanufacturingenvironmentswillskewthevisibilityAImodelshaveofcriticalareassuchasglobalsupplychaindynamics,”Kaestneradds.
Withoutacohesivestrategytofullyintegrateandanalyzedatafrommultiplesources,companiesriskmissingoutonvaluableAI-poweredinsightsthatcoulddriveefficiency,reducecosts,andacceleratetimetomarket.
Intherealmofindustrialmanufacturing,theintegrationofadvancedengineeringsystemsanddesignmethodologiesisparamountforfosteringinnovationandenhancingoperationalefficiency.Whilethesectorhasbeenmeticulouslyworkingtoadoptthelatesttechnologies,includingartificialintelligence(AI)andextensivemachinelearningcapabilities,theseareoftensiloedwithinindividualsystemssuchascustomerrelationshipmanagementandprocurementplatforms.
MartinKaestner
TechnologyLeader,IndustrialManufacturingKPMGintheUS
KPMGglobaltechreport—industrialmanufacturinginsights7
Executivesummary
Keyfindings
Mfis’rtitive
inrilang
Methodology
HowKPMGcanhelp
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
Whileithasabove-averagedatamaturity,theindustrycontinuestoholditselfto
highstandards
Eventhoughdatasiloesremainachallenge,strongdatafoundationssupportthesector’soverallAIprogress.Industrialmanufacturing
performsabovethecross-sectoraverageintheproportionofitsorganizationsthatareinourtoptwolevelsofdatamaturity.
“Theindustrialmanufacturingsectorhasbuiltarichdigital
architectureforitsdata,”saysBhatnagar.“Thesector’shigh-qualitydatamanagementprocessesandinfrastructuresuchassensors,
serversandcloudplatformshelpensurethattherightdataispulledfromtherightplacesattherightfrequency,formatandquality.”
Industrialmanufacturingisthesectormostlikelytociteimmaturedatamanagementasthetopfactorslowingtheirdigitaltransformationprogress.
KPMGglobaltechreport—industrialmanufacturinginsights8
Executivesummary
Keyfindings
Mfis’rtitive
inrilang
Methodology
HowKPMGcanhelp
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
Proportionofexecutivesinthetoptwolevelsofmaturityindatamanagement
Datainvestments
Ensuringdatasysteminvestmentsalignwithprioritiesofallbusinessstakeholders
53%
56%
52%
56%
52%
57%
51%
58%
51%
58%
50%
54%
Datamonetization
Leveragingdataforcompetitiveadvantageinnewbusinessmodels
Datasecurity
Protectingdatathroughthesecurityofsystems,standardsandgovernanceprocesses
Datagovernance
Conductingauditstoaddressdataintegrityandcreatingframeworksthatprovideclearaccountability
Datainteroperability
Addressingdatasilosandpoordataintegration
Datascience
Usingreal-timeorpredictiveanalyticstoinformdecisions
AverageacrossallsectorsIndustrialmanufacturing
Howeffectiveareyourdataandanalyticsactivitiesinthefollowingareas?(Influential/embedded)
Source:KPMGglobaltechreport2024
Butratherthanbecomecomplacent,thesectorcontinuestohold
itselftohighstandardsandmaintainsambitiousdatagoals.Althoughitsaccesstodataishigh,industrialmanufacturingisalsothesectorwhoseorganizationsaremostlikelytobealerttothefactthat
furtherimprovementstothedatastrategywouldacceleratethepaceofdigitaltransformation.Forinstance,totakefulladvantageofgenerativeAI,industrialmanufacturerswillneedtoconstructareliable,trustworthydatainfrastructurethatiscustomizedtotheirbusinessneeds.
So,howcanthesector’sorganizationsmakesurethattheirdata
strategiesareenablersofprogress,ratherthanblockers?“Tomake
theirbusinessesmoreprofitableandcustomercentric,manufacturersneedtokeepincreasingtheirvisualizationcapabilitiesandworkflowstofacilitatedata-leddecision-makingandensuretheseinsightsreachtherightemployeesattherighttime,”saysBhatnagar.“Thereisstillworktobedonehere,buttheyareonthevergeofgettingthisright.”
Acrucialstepwillbetoprovidedashboardinterfacesthatpresentdatainsightsinaclearandintuitiveformat,sothatworkerscan
makedecisionsquickly.Thesuccessoftheseplatformswilldependheavilyondatagovernanceandinteroperabilitycapabilities,which,incomparisonwithothersectors,arebothkeyskillsforindustrial
manufacturing.Onbothcounts,industrialmanufacturingperformed
7percentagepointshigherthanthecross-sectoraverageof
51percent.
Interoperabilitywillbeanespeciallyimportantrequirementfor
trustworthydigitalinnovation,andparticularlywhenitcomestoAI.Tosustaintheirmomentumandmovedataathighspeedsandeveninrealtime,manufacturersmustfocuspartsoftheircybersecuritystrategiesonprotectinginternaldatatransfer.“Oneofthebiggestthingsmanufacturershavetoaddressisbuildingenoughsecurity
protectionaroundtheirinternalnetworkstoengineeringdesign
systems,”saysBhatnagar.“Especiallyforwhentheybegintosharedatainrealtimewiththeoutsideworld.”
KPMGglobaltechreport—industrialmanufacturinginsights9
Executivesummary
Keyfindings
Mfis’rtitive
Methodology
HowKPMGcanhelp
Theroadaheadfor
industrialmanufacturing
IMhasabove-average
datamaturity
IMexcelsat
achievingAIROI
Theroadaheadforindustrialmanufacturing
Asthemanufacturingsectorrespondsstrategicallytoshiftingsupplychaindynamicsandgrowingenvironmentaldemands,itsorganizationsshould:
Nurturetheproactiveandprogressivespiritthatispoweringtheirdigitaltransformationefforts.Theongoingevolutionofcybersecuritystrategiesshouldfeatureinitiativesthatenhancethesecurityprotectionofinternaldatanetworkspluggingintoengineeringdesignsystems,especiallyforreal-timedatasharing.
Improvevisualizationcapabilitiesandworkflowstohelpworkersmakebetterdecisionsbasedondatainsights.Andmakesurethattheseinsightsreachtherightemployeesattherighttimes.
InparallelwiththeriseofAIintheworkplace,preparetheworkforcebyupskillingfactoryworkerswithlearningprogramsthattargetanalyticaldecision-makingandsciencetechnologyskills.IMexecutivesaremoreinclinedthanmosttobelievethatGenAIwillboostproductivityandenhancecollaborationwithapositiveimpactinITandcreativejobs.1
Explorenewwaystoinnovatetomeetclients’expectationsofspeedandcustomization,andmakeoperationsmoreenergyefficient.By
capturingandcentralizingtheadhocdataprovidedbyconsumerswhentheysharetheirpreferencesandfeedbackoncertainproductfeatures,manufacturerscouldfindinsightsthatleadtonewproductlinesorrevenuestreams.Investinprocessesandsystemsthatelevatethevoiceofthecustomersothattheorganizationcangiveitstargetaudiencewhatitwants.
ToreallyoptimizetheuseofAIandnewtechnology,industrialmanufacturers
needtocombinewhattheydobest
(manufacturephysicalproducts)with
whatdigitaldoesbest(collectreal-time
dataandembedAI)todifferentiatetheirproductsandgainanewcompetitive
advantage.Itwillnotbeenoughtoadd
digitalfunctionalitytoanalogmachines—acompletere-imaginationisneeded.
CarmeloMariano
IndustrialManufacturingLeaderKPMGItaly
Manufacturingmightbeaheadofothersectorsindigitaltransformation,buttheneedtoinnovatedoesnotstophere.“Wewillcontinuetoseeaconstantpushforinnovation,”saysKPMGinIndia’sSaurabhBhatnagar.“Moretechnology,moreagility,moretailoringtosuitthecustomer,andfasterspeedto
delivery.Tomeettheseneeds,theindustrialmanufacturingsectorwillneedtorelyondigitalinterventionsevenmoreinfuture.”
1KPMGinUS
GettingaheadstartwithgenerativeAIinindustrialmanufacturing
,2023
KPMGglobaltechreport—industrialmanufacturinginsights10
Manufacturing’sproactiveIMexcelsat
andprogressivespiritachievingAIROI
Methodology
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学六年级下册第五章广角-鸽巢问题解答题训练
- 上海中华职业技术学院《体育美学》2023-2024学年第一学期期末试卷
- 江西省赣州市章贡区2025届小升初总复习数学精练含解析
- 宿州职业技术学院《职业教育信息化概论》2023-2024学年第二学期期末试卷
- 呼和浩特民族学院《羽毛球专项理论与实践》2023-2024学年第二学期期末试卷
- 重庆电讯职业学院《酿酒机械与设备》2023-2024学年第一学期期末试卷
- 余江县第一中学2025年高三下学期模拟卷(五)物理试题含解析
- 北京语言大学《团体心理咨询》2023-2024学年第一学期期末试卷
- 西南财经大学天府学院《写意花鸟实验教学》2023-2024学年第二学期期末试卷
- 河北省石家庄市2025年高三十月月考物理试题试卷含解析
- 五氟乙氧基环三磷腈的合成方法研究华中师范大学
- 2023年10月自考财务管理学00067试题及答案
- 《战略性新兴产业分类(2023年)》
- LY/T 2974-2018旱冬瓜培育技术规程
- GB/T 3745.1-1983卡套式三通管接头
- 仪器仪表维保方案
- 区域经理工作手册课件
- 慢性肺源性心脏病(教学)课件
- 小学三年级诗词大会初赛比赛题目课件
- 大豆油精炼加工工艺
- 部编版初中语文九年级下册第一单元-复习课件
评论
0/150
提交评论