吉林省长春市德惠实验中学2025年高考押题卷数学试题_第1页
吉林省长春市德惠实验中学2025年高考押题卷数学试题_第2页
吉林省长春市德惠实验中学2025年高考押题卷数学试题_第3页
吉林省长春市德惠实验中学2025年高考押题卷数学试题_第4页
吉林省长春市德惠实验中学2025年高考押题卷数学试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市德惠实验中学2025年高考押题卷数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果实数满足条件,那么的最大值为()A. B. C. D.2.的展开式中的系数为()A.-30 B.-40 C.40 D.503.设函数,则,的大致图象大致是的()A. B.C. D.4.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.5.已知平面向量满足,且,则所夹的锐角为()A. B. C. D.06.直三棱柱中,,,则直线与所成的角的余弦值为()A. B. C. D.7.给出下列三个命题:①“”的否定;②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0 B.1 C.2 D.38.等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:(1)四面体EBCD的体积有最大值和最小值;(2)存在某个位置,使得;(3)设二面角的平面角为,则;(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.其中,正确说法的个数是()A.1 B.2 C.3 D.49.若函数在时取得极值,则()A. B. C. D.10.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.11.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A. B. C. D.12.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.36二、填空题:本题共4小题,每小题5分,共20分。13.在一底面半径和高都是的圆柱形容器中盛满小麦,有一粒带麦锈病的种子混入了其中.现从中随机取出的种子,则取出了带麦锈病种子的概率是_____.14.已知函数,则过原点且与曲线相切的直线方程为____________.15.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)16.等腰直角三角形内有一点P,,,,,则面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.18.(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点.(1)求曲线,的直角坐标方程;(2)若点A,B为曲线上的两个点且,求的值.19.(12分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.20.(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时,.21.(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.22.(10分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

解:当直线过点时,最大,故选B2.C【解析】

先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.3.B【解析】

采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.4.B【解析】

由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.5.B【解析】

根据题意可得,利用向量的数量积即可求解夹角.【详解】因为即而所以夹角为故选:B【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.6.A【解析】

设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.【详解】设,延长至,使得,连,在直三棱柱中,,,四边形为平行四边形,,(或补角)为直线与所成的角,在中,,在中,,在中,,在中,,在中,.

故选:A.【点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.7.C【解析】

结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题.故假命题有①③.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.8.C【解析】

解:对于(1),当CD⊥平面ABE,且E在AB的右上方时,E到平面BCD的距离最大,当CD⊥平面ABE,且E在AB的左下方时,E到平面BCD的距离最小,∴四面体E﹣BCD的体积有最大值和最小值,故(1)正确;对于(2),连接DE,若存在某个位置,使得AE⊥BD,又AE⊥BE,则AE⊥平面BDE,可得AE⊥DE,进一步可得AE=DE,此时E﹣ABD为正三棱锥,故(2)正确;对于(3),取AB中点O,连接DO,EO,则∠DOE为二面角D﹣AB﹣E的平面角,为θ,直角边AE绕斜边AB旋转,则在旋转的过程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正确;对于(4)AE的中点M与AB的中点N连线交平面BCD于点P,P到BC的距离为:dP﹣BC,因为<1,所以点P的轨迹为椭圆.(4)正确.故选:C.点睛:该题考查的是有关多面体和旋转体对应的特征,以几何体为载体,考查相关的空间关系,在解题的过程中,需要认真分析,得到结果,注意对知识点的灵活运用.9.D【解析】

对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.10.C【解析】

令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.11.D【解析】

由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,,设,该函数在为增函数,,,在上有零点,故函数的“新驻点”为,那么故选:.【点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..12.B【解析】

根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

求解占圆柱形容器的的总容积的比例求解即可.【详解】解:由题意可得:取出了带麦锈病种子的概率.故答案为:.【点睛】本题主要考查了体积类的几何概型问题,属于基础题.14.【解析】

设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.15.【解析】

首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.【详解】首先选派男医生中唯一的主任医师,然后从名男医生、名女医生中分别抽调2名男医生、名女医生,故选派的方法为:.故答案为.【点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).16.【解析】

利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,,,所以化简可得:则或,即或由,所以所以故答案为:【点睛】本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由题意可得,,,解得即可求出椭圆的C的方程;(Ⅱ)由已知设直线l的方程为y=k(x-2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,解得.由方程组消去y,解得,由,得到,转化为关于k的不等式,求得k的范围.【详解】(Ⅰ)因为过焦点且垂直于长轴的直线被椭圆截得的线段长为3,所以,因为椭圆离心率为,所以,又,解得,,,所以椭圆的方程为;(Ⅱ)设直线的斜率为,则,设,由得,解得,或,由题意得,从而,由(Ⅰ)知,,设,所以,,因为,所以,所以,解得,所以直线的方程为,设,由消去,解得,在中,,即,所以,即,解得,或.所以直线的斜率的取值范围为.【点睛】本题考查在直线与椭圆的位置关系中由已知条件求直线的斜率取值范围问题,还考查了由离心率求椭圆的标准方程,属于难题.18.(1)..(2)【解析】

(1)先求解a,b,消去参数,即得曲线的直角坐标方程;再求解,利用极坐标和直角坐标的互化公式,即得曲线的直角坐标方程;(2)由于,可设,,代入曲线直角坐标方程,可得的关系,转化,可得解.【详解】(1)将及对应的参数,代入得,即,所以曲线的方程为,为参数,所以曲线的直角坐标方程为.设圆的半径为R,由题意,圆的极坐标方程为(或),将点代入,得,即,所以曲线的极坐标方程为,所以曲线的直角坐标方程为.(2)由于,故可设,代入曲线直角坐标方程,可得,,所以.【点睛】本题考查了极坐标和直角坐标,参数方程和一般方程的互化以及极坐标的几何意义的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.19.(1)(2)【解析】

(1)当时,不等式可化为:,再利用绝对值的意义,分,,讨论求解.(2)根据可得,得到函数的图象与两坐标轴的交点坐标分别为,再利用三角形面积公式由求解.【详解】(1)当时,不等式可化为:①当时,不等式化为,解得:②当时,不等式化为,解得:,③当时,不等式化为解集为,综上,不等式的解集为.(2)由题得,所以函数的图象与两坐标轴的交点坐标分别为,的面积为,由,得(舍),或,所以,参数的取值范围是.【点睛】本题主要考查绝对值不等式的解法和绝对值函数的应用,还考查分类讨论的思想和运算求解的能力,属于中档题.20.(1);函数的单调递减区间为,单调递增区间为;(2)详见解析.【解析】

试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;(2)由(1)得根据由,整理得,设,转化为函数的最值,即可作出证明.试题解析:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论