2025届山西省太原市六十六中高三寒假收心考一数学试题_第1页
2025届山西省太原市六十六中高三寒假收心考一数学试题_第2页
2025届山西省太原市六十六中高三寒假收心考一数学试题_第3页
2025届山西省太原市六十六中高三寒假收心考一数学试题_第4页
2025届山西省太原市六十六中高三寒假收心考一数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省太原市六十六中高三寒假收心考一数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为()A.1 B.2 C.3 D.42.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为().A. B. C. D.3.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()A. B. C. D.4.已知中,角、所对的边分别是,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充分必要条件5.某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为A. B. C. D.6.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.7.设全集U=R,集合,则()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}8.若,则“”的一个充分不必要条件是A. B.C.且 D.或9.函数且的图象是()A. B.C. D.10.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为11.已知数列满足,则()A. B. C. D.12.复数满足,则复数等于()A. B. C.2 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.14.若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_________.15.已知函数的图象在点处的切线方程是,则的值等于__________.16.在面积为的中,,若点是的中点,点满足,则的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知满足,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)18.(12分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.19.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.20.(12分)如图,在中,已知,,,为线段的中点,是由绕直线旋转而成,记二面角的大小为.(1)当平面平面时,求的值;(2)当时,求二面角的余弦值.21.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.22.(10分)已知.(1)若的解集为,求的值;(2)若对任意,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.【详解】解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;对于②,连结,,在中,,而,是的中点,所以,②正确;对于③由②可知,在中,,连结,易知,而在中,,,即,又,面,平面平面,③正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;,,,,,;,;异面直线与所成角为,,故.④不正确.故选:.【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.2、C【解析】

由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值.【详解】解:把函数的图象向右平移个单位长度得到函数的图象,若函数在区间,上单调递增,在区间,上,,,则当最大时,,求得,故选:C.【点睛】本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题.3、A【解析】

根据题意,分别求出再根据离散型随机变量期望公式进行求解即可【详解】由题可知,,,则解得,由可得,答案选A【点睛】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功4、D【解析】

由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“”是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题.5、C【解析】

由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C.6、A【解析】

由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.7、C【解析】

解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.8、C【解析】,∴,当且仅当时取等号.故“且”是“”的充分不必要条件.选C.9、B【解析】

先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.10、C【解析】

根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.11、C【解析】

利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.12、B【解析】

通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,∴,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

利用AB中有且只有一个元素,可得,可求实数a的值.【详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【点睛】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.14、【解析】

将四面体补成一个正方体,通过正方体的对角线与球的半径的关系,得到球的半径,利用球的表面积公式,即可求解.【详解】如图所示,将正四面体补形成一个正方体,则正四面体的外接球与正方体的外接球表示同一个球,因为正四面体的棱长为1,所以正方体的棱长为,设球的半径为,因为球的直径是正方体的对角线,即,解得,所以球的表面积为.【点睛】本题主要考查了有关求得组合体的结构特征,以及球的表面积的计算,其中巧妙构造正方体,利用正方体的外接球的直径等于正方体的对角线长,得到球的半径是解答的关键,着重考查了空间想象能力,以及运算与求解能力,属于基础题.15、【解析】

利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.16、【解析】

由任意三角形面积公式与构建关系表示|AB||AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由△ABC的面积为得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①与②的平方和得:|AB||AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】

选择①时:,,计算,根据正弦定理得到,计算面积得到答案;选择②时,,,故,为钝角,故无解;选择③时,,根据正弦定理解得,,根据正弦定理得到,计算面积得到答案.【详解】选择①时:,,故.根据正弦定理:,故,故.选择②时,,,故,为钝角,故无解.选择③时,,根据正弦定理:,故,解得,.根据正弦定理:,故,故.【点睛】本题考查了三角恒等变换,正弦定理,面积公式,意在考查学生的计算能力和综合应用能力.18、(1)证明见解析;(2)见解析;(3)存在,1.【解析】

(1),求出单调区间,进而求出,即可证明结论;(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.【详解】(1),,,当时,,当时,,∴,故.(2)由题知,,,①当时,,所以在上单调递减,没有极值;②当时,,得,当时,;当时,,所以在上单调递减,在上单调递增.故在处取得极小值,无极大值.(3)不妨令,设在恒成立,在单调递增,,在恒成立,所以,当时,,由(2)知,当时,在上单调递减,恒成立;所以不等式在上恒成立,只能.当时,,由(1)知在上单调递减,所以,不满足题意.当时,设,因为,所以,,即,所以在上单调递增,又,所以时,恒成立,即恒成立,故存在,使得不等式在上恒成立,此时的最小值是1.【点睛】本题考查导数综合应用,涉及到函数的单调性、极值最值、不等式证明,考查分类讨论思想,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.19、(1)证明见解析(2)证明见解析【解析】

(1)通过证明,即可证明线面平行;(2)通过证明平面,即可证明线线垂直.【详解】(1)连,因为为平行四边形,为其中心,所以,为中点,又因为为中点,所以,又平面,平面所以,平面;(2)作于因为平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【点睛】此题考查证明线面平行和线面垂直,通过线面垂直得线线垂直,关键在于熟练掌握相关判定定理,找出平行关系和垂直关系证明.20、(1);(2).【解析】

(1)平面平面,建立坐标系,根据法向量互相垂直求得;(2)求两个平面的法向量的夹角.【详解】(1)如图,以为原点,在平面内垂直于的直线为轴所在的直线分别为轴,轴,建立空间直角坐标系,则,设为平面的一个法向量,由得,取,则因为平面的一个法向量为由平面平面,得所以即.(2)设二面角的大小为,当平面的一个法向量为,综上,二面角的余弦值为.【点睛】本题考查用空间向量求平面间的夹角,平面与平面垂直的判定,二面角的平面角及求法,难度一般.21、(1)见解析;(2)【解析】

(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论