




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省葫芦岛第六高级中学2025年高考模拟信息考试数学试题(五)请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列判断错误的是()A.若随机变量服从正态分布,则B.已知直线平面,直线平面,则“”是“”的充分不必要条件C.若随机变量服从二项分布:,则D.是的充分不必要条件2.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.13.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.4.设等比数列的前项和为,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.6.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A.8种 B.12种 C.16种 D.20种7.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则()A.6 B.8 C.10 D.128.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.29.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.10.已知数列满足,则()A. B. C. D.11.已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是()A. B. C. D.12.已知复数满足:(为虚数单位),则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点到准线的距离为.14.已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_______.15.集合,,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为________①的值可以为2;②的值可以为;③的值可以为;16.(5分)有一道描述有关等差与等比数列的问题:有四个和尚在做法事之前按身高从低到高站成一列,已知前三个和尚的身高依次成等差数列,后三个和尚的身高依次成等比数列,且前三个和尚的身高之和为cm,中间两个和尚的身高之和为cm,则最高的和尚的身高是____________cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,,,求的面积.18.(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.19.(12分)已知在平面直角坐标系中,椭圆的焦点为为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)若直线交椭圆于两点,且满足(分别为直线的斜率),求的面积为时直线的方程.20.(12分)已知,函数.(1)若函数在上为减函数,求实数的取值范围;(2)求证:对上的任意两个实数,,总有成立.21.(12分)数列满足,且.(1)证明:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.22.(10分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.【详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布:,则,故选项正确,不符合题意;对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D【点睛】本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.2、B【解析】
,选B.3、C【解析】
分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).4、C【解析】
根据等比数列的前项和公式,判断出正确选项.【详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.5、D【解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.6、C【解析】
分两类进行讨论:物理和历史只选一门;物理和历史都选,分别求出两种情况对应的组合数,即可求出结果.【详解】若一名学生只选物理和历史中的一门,则有种组合;若一名学生物理和历史都选,则有种组合;因此共有种组合.故选C【点睛】本题主要考查两个计数原理,熟记其计数原理的概念,即可求出结果,属于常考题型.7、D【解析】
根据程序框图判断出的意义,由此求得的值,进而求得的值.【详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,,所以.故选:D【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.8、B【解析】
求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.9、B【解析】
求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.10、C【解析】
利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.11、D【解析】
根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,,则,解得:设,,则,解得:,则本题正确选项:【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.12、A【解析】
利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质.14、【解析】
根据三角形三边关系可知对任意的恒成立,将的解析式用分离常数法变形,由均值不等式可得分母的取值范围,则整个式子的取值范围由的符号决定,故分为三类讨论,根据函数的单调性求出函数值域,再讨论,转化为的最小值与的最大值的不等式,进而求出的取值范围.【详解】因为对任意正实数,都存在以为三边长的三角形,故对任意的恒成立,,令,则,当,即时,该函数在上单调递减,则;当,即时,,当,即时,该函数在上单调递增,则,所以,当时,因为,,所以,解得;当时,,满足条件;当时,,且,所以,解得,综上,,故答案为:【点睛】本题考查参数范围,考查三角形的构成条件,考查利用函数单调性求函数值域,考查分类讨论思想与转化思想.15、②③【解析】
根据对称性,只需研究第一象限的情况,计算:,得到,,得到答案.【详解】如图所示:根据对称性,只需研究第一象限的情况,集合:,故,即或,集合:,是平面上正八边形的顶点所构成的集合,故所在的直线的倾斜角为,,故:,解得,此时,,此时.故答案为:②③.【点睛】本题考查了根据集合的交集求参数,意在考查学生的计算能力和转化能力,利用对称性是解题的关键.16、【解析】
依题意设前三个和尚的身高依次为,第四个(最高)和尚的身高为,则,解得,又,解得,又因为成等比数列,则公比,故.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为,单调递增区间为;(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得该函数的单调递增区间;(2)由求得,由得出或,分两种情况讨论,结合余弦定理解三角形,进行利用三角形的面积公式可求得的面积.【详解】(1),所以,函数的最小正周期为,由得,因此,函数的单调递增区间为;(2)由,得,或,或,,,又,,即.①当时,即,则由,,得,则,此时,的面积为;②当时,则,即,则由,解得,,.综上,的面积为.【点睛】本题考查正弦型函数的周期和单调区间的求解,同时也考查了三角形面积的计算,涉及余弦定理解三角形的应用,考查计算能力,属于中等题.18、解:设特征向量为α=对应的特征值为λ,则=λ,即因为k≠0,所以a=2.5分因为,所以A=,即=,所以2+k=3,解得k=2.综上,a=2,k=2.20分【解析】试题分析:由特征向量求矩阵A,由逆矩阵求k考点:特征向量,逆矩阵点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,考查逆矩阵.19、(1)(2)或【解析】
(1)根据椭圆定义求得,得椭圆方程;(2)设,由得,应用韦达定理得,代入已知条件可得,再由椭圆中弦长公式求得弦长,原点到直线的距离,得三角形面积,从而可求得,得直线方程.【详解】解:(1)据题意设椭圆的方程为则椭圆的标准方程为.(2)据得设,则又原点到直线的距离解得或所求直线的方程为或【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题.解题时采取设而不求思想,即设交点坐标为,直线方程与椭圆方程联立消元后应用韦达定理得,把这个结论代入题中条件求得参数,用它求弦长等等,从而解决问题.20、(1)(2)见解析【解析】
(1)求出函数的导函数,依题意可得在上恒成立,参变分离得在上恒成立.设,求出即可得到参数的取值范围;(2)不妨设,,,利用导数说明函数在上是减函数,即可得证;【详解】解:(1)∵∴,且函数在上为减函数,即在上恒成立,∴在上恒成立.设,∵函数在上单调递增,∴,∴,∴实数的取值范围为.(2)不妨设,,,则,∴.∵,∴,又,令,∴,∴在上为减函数,∴,∴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《第8课 算法的多样性》教学设计教学反思-2023-2024学年小学信息技术浙教版23六年级上册
- 七年级语文上册 第三单元 10 再塑生命的人教学设计1 新人教版
- Unit6 SectionA 1a~1c教学设计 -2024-2025学年人教版英语八年级上册
- 《两位数加两位数(不进位)》教学设计-2024-2025学年一年级下册数学人教版
- 4.3.1空间中直线与直线的位置关系课件高一下学期数学湘教版(2019)必修第二册
- 腹部手术围术期管理
- 《神奇的计算工具》教学设计-2024-2025学年四年级上册数学北师大版
- 车辆保险知识详解
- 2024年高中化学 第一章 认识有机化合物 第四节 第2课时 元素分析与相对分子质量的测定 分子结构的鉴定教学设计 新人教版选修5
- 课件圣诞节礼物
- 公司车辆管理制度
- 民族相处有礼仪ppt
- 保健食品安全管理制度69094
- 体育与健康课程教学评价(汪晓赞)1课件
- Python程序设计教程PPT完整全套教学课件
- 部编人教版二年级道德与法治下册同步练习(全册)
- 第九讲 全面依法治国PPT习概论2023优化版教学课件
- 7.4.2 超几何分布 课件(26张)
- 毕业设计(论文)-ZJ-600型罗茨真空泵设计
- 2022-2023学年湖北省武汉市重点中学5G联合体高一(下)期中英语试卷及参考答案
- 生产异常处理流程图来料工艺及制程
评论
0/150
提交评论