版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省咸宁市2025年高考数学试题全真模拟卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.2.已知,则的值构成的集合是()A. B. C. D.3.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.4.已知复数是正实数,则实数的值为()A. B. C. D.5.复数(为虚数单位),则的共轭复数在复平面上对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.若复数满足,则的虚部为()A.5 B. C. D.-57.函数的大致图象是()A. B.C. D.8.函数(且)的图象可能为()A. B. C. D.9.已知向量,夹角为,,,则()A.2 B.4 C. D.10.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A. B. C. D.11.已知函数(其中,,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:①直线是函数图象的一条对称轴;②点是函数的一个对称中心;③函数与的图象的所有交点的横坐标之和为.其中正确的判断是()A.①② B.①③ C.②③ D.①②③12.若复数(为虚数单位),则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,则__________.14.(5分)在平面直角坐标系中,过点作倾斜角为的直线,已知直线与圆相交于两点,则弦的长等于____________.15.利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是______16.某地区连续5天的最低气温(单位:℃)依次为8,,,0,2,则该组数据的标准差为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.18.(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.19.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为.(Ⅰ)求直线的普通方程及曲线的直角坐标方程;(Ⅱ)设点,直线与曲线相交于,,求的值.21.(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.22.(10分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412y51.522.58y与x可用回归方程(其中,为常数)进行模拟.(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.(Ⅱ)据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;(ⅱ)求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养2、C【解析】
对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.3、B【解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.4、C【解析】
将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.5、C【解析】
由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【详解】解析:,,对应点为,在第三象限.故选:C.【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.6、C【解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.7、A【解析】
用排除B,C;用排除;可得正确答案.【详解】解:当时,,,所以,故可排除B,C;当时,,故可排除D.故选:A.【点睛】本题考查了函数图象,属基础题.8、D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.9、A【解析】
根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.10、A【解析】
根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.【详解】当时,,当时,,当时,,当时,,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.11、C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否.详解:因为为对称中心,且最低点为,所以A=3,且由所以,将带入得,所以由此可得①错误,②正确,③当时,,所以与有6个交点,设各个交点坐标依次为,则,所以③正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题.12、B【解析】
根据复数的除法法则计算,由共轭复数的概念写出.【详解】,,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【详解】,,.故答案为:.【点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.14、【解析】
方法一:依题意,知直线的方程为,代入圆的方程化简得,解得或,从而得或,则.方法二:依题意,知直线的方程为,代入圆的方程化简得,设,则,故.方法三:将圆的方程配方得,其半径,圆心到直线的距离,则.15、【解析】
计算正四面体的高,并计算该正四面体的体积,利用等体积法,可得结果.【详解】作平面,为的重心如图则,所以设正四面体内任意一点到四个面的距离之和为则故答案为:【点睛】本题考查类比推理的应用,还考查等体积法,考验理解能力以及计算能力,属基础题.16、【解析】
先求出这组数据的平均数,再求出这组数据的方差,由此能求出该组数据的标准差.【详解】解:某地区连续5天的最低气温(单位:依次为8,,,0,2,平均数为:,该组数据的方差为:,该组数据的标准差为1.故答案为:1.【点睛】本题考查一组数据据的标准差的求法,考查平均数、方差、标准差的定义等基础知识,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】
(1)利用离心率和椭圆经过的点建立方程组,求解即可.(2)把面积之比转化为纵坐标之间的关系,联立方程结合韦达定理可求.【详解】解:(1)设焦距为2c,由题意知:;解得,所以椭圆的方程为.(2)由(1)知:F(﹣1,0),设l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直线l的方程为.【点睛】本题主要考查椭圆方程的求解及椭圆中的面积问题,椭圆方程一般利用待定系数法,建立方程组进行求解,面积问题的合理转化是求解的关键,侧重考查数学运算的核心素养.18、(1)整数的最大值为;(2)见解析.【解析】
(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【详解】(1)由得,令,,令,对恒成立,所以,函数在上单调递增,,,,,故存在使得,即,从而当时,有,,所以,函数在上单调递增;当时,有,,所以,函数在上单调递减.所以,,,因此,整数的最大值为;(2)由(1)知恒成立,,令则,,,,,上述等式全部相加得,所以,,因此,【点睛】本题考查导数在函数单调性、最值中的应用,以及放缩法证明不等式的技巧,属于难题.19、(1)(2)【解析】
(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20、(Ⅰ),;(Ⅱ).【解析】
(Ⅰ)由(为参数)直接消去参数,可得直线的普通方程,把两边同时乘以,结合,可得曲线的直角坐标方程;(Ⅱ)把代入,化为关于的一元二次方程,利用根与系数的关系及参数的几何意义求解.【详解】解:(Ⅰ)由(为参数),消去参数,可得.∵,∴,即.∴曲线的直角坐标方程为;(Ⅱ)把代入,得.设,两点对应的参数分别为,则,.不妨设,,∴.【点睛】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,明确直线参数方程中参数的几何意义是解题的关键,是中档题.21、(1),(1,2);(2)存在,【解析】
(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意,可得,解得m<-1或,由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年泉州市正茂人力资源有限公司招聘项目制人员2人参考考试题库及答案解析
- 2025内蒙古阿拉善盟额济纳旗乌兰牧骑招聘事业编制人员7人考试备考试题及答案解析
- 2026年合肥市第四十五中学校聘教师招聘考试备考试题及答案解析
- 2025湖南衡阳市常宁市遴选公务员22人参考考试题库及答案解析
- 2026河南省中西医结合医院招聘11人考试参考试题及答案解析
- 2026重庆医科大学附属康复医院招聘2人笔试备考题库及答案解析
- 2026年新能源电池运维专员面试题及答案
- 2026年腾讯云仓储面试题目及答案
- 2026年智慧城市项目管理宝典及答案参考
- 2026四川巴中经济开发区人力资源和社会保障服务中心招聘第一批城镇公益性岗位人员7人笔试备考题库及答案解析
- 纺织工业“十五五”发展规划
- 人工智能通识 课件 第七章 智能之躯-具身智能
- 肝栓塞介入手术后护理
- 《辣椒病害图谱》课件
- 超市火灾安全演练与疏散预案
- 教育教学微型课题申请·评审表
- 职业技术学院《建筑力学与结构》课程标准
- 翻译技术实践智慧树知到期末考试答案章节答案2024年山东师范大学
- JJG 621-2012 液压千斤顶行业标准
- 本科实习男护生职业认同感调查及影响因素分析
- 未分化型精神分裂症的护理查房
评论
0/150
提交评论