




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北邢台市内丘中学高三下学期期末教学质量检测试题(一模)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若非零实数、满足,则下列式子一定正确的是()A. B.C. D.2.是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.634.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过5.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.46.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()A.24 B.36 C.48 D.647.关于函数,有下述三个结论:①函数的一个周期为;②函数在上单调递增;③函数的值域为.其中所有正确结论的编号是()A.①② B.② C.②③ D.③8.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是()A.丙被录用了 B.乙被录用了 C.甲被录用了 D.无法确定谁被录用了9.在中,角的对边分别为,若.则角的大小为()A. B. C. D.10.已知双曲线的一条渐近线倾斜角为,则()A.3 B. C. D.11.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.12.已知函数,以下结论正确的个数为()①当时,函数的图象的对称中心为;②当时,函数在上为单调递减函数;③若函数在上不单调,则;④当时,在上的最大值为1.A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,若,则数列的前n项和______.14.已知函数,曲线与直线相交,若存在相邻两个交点间的距离为,则可取到的最大值为__________.15.的展开式中的系数为________.16.己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.(1)证明:平面;(2)求点N到平面CDM的距离.18.(12分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.(Ⅰ)证明:平面;(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.19.(12分)已知动点到定点的距离比到轴的距离多.(1)求动点的轨迹的方程;(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.20.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.21.(12分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.22.(10分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.(1)若当时,,求此时的值;(2)设,且.(i)试将表示为的函数,并求出的取值范围;(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.【详解】令,则,,,,,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.2.A【解析】
设成立;反之,满足,但,故选A.3.D【解析】
根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.4.D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.5.D【解析】
先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.6.B【解析】
根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.7.C【解析】
①用周期函数的定义验证.②当时,,,再利用单调性判断.③根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【详解】因为,故①错误;当时,,所以,所以在上单调递增,故②正确;函数的值域等价于函数的值域,易知,故当时,,故③正确.故选:C.【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.8.C【解析】
假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.9.A【解析】
由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选A.【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.10.D【解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.11.C【解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.12.C【解析】
逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.【详解】①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.②由题意知.因为当时,,又,所以在上恒成立,所以函数在上为单调递减函数,正确.③由题意知,当时,,此时在上为增函数,不合题意,故.令,解得.因为在上不单调,所以在上有解,需,解得,正确.④令,得.根据函数的单调性,在上的最大值只可能为或.因为,,所以最大值为64,结论错误.故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【详解】由题为等差数列,∴,∴,∴,∴,故答案为【点睛】本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.14.4【解析】
由于曲线与直线相交,存在相邻两个交点间的距离为,所以函数的周期,可得到的取值范围,再由解出的两类不同的值,然后列方程求出,再结合的取值范围可得的最大值.【详解】,可得,由,则或,即或,由题意得,所以,则或,所以可取到的最大值为4.故答案为:4【点睛】此题考查正弦函数的图像和性质的应用及三角方程的求解,熟练应用三角函数的图像和性质是解题的关键,考查了推理能力和计算能力,属于中档题.15.80.【解析】
只需找到展开式中的项的系数即可.【详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.【点睛】本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.16.【解析】
首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案.【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,,解得.故答案为.【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】
(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因为平面ABMN,平面ABMN,所以,,因为,所以,因为,所以,所以,因为在直角梯形ABMN中,,所以,所以,所以,因为,所以平面.(2)如图,取BM的中点E,则,又BM∥AN,所以四边形ABEN是平行四边形,所以NE∥AB,又AB∥CD,所以NE∥CD,因为平面CDM,平面CDM,所以NE∥平面CDM,所以点N到平面CDM的距离与点E到平面CDM的距离相等,设点N到平面CDM的距离为h,由可得点B到平面CDM的距离为2h,由题易得平面BCM,所以,且,所以,又,所以由可得,解得,所以点N到平面CDM的距离为.18.(Ⅰ)见解析;(Ⅱ)【解析】
(Ⅰ)要证明线面平行,需先证明线线平行,所以连接,交于点M,连接ME,证明;(Ⅱ)由题意可知点到平面ABC的距离等于点到平面ABC的距离,根据体积公式剩余部分的体积是.【详解】(Ⅰ)如图,连接,交于点M,连接ME,则.因为平面,平面,所以平面.(Ⅱ)因为平面ABC,所以点到平面ABC的距离等于点到平面ABC的距离.如图,设O是AC的中点,连接,OB.因为为正三角形,所以,又平面平面,平面平面,所以平面ABC.所以点到平面ABC的距离,故三棱锥的体积为.而斜三棱柱的体积为.所以剩余部分的体积为.【点睛】本题考查证明线面平行,计算体积,意在考查推理证明,空间想象能力,计算能力,属于中档题型,一般证明线面平行的方法1.证明线线平行,则线面平行,2.证明面面平行,则线面平行,关键是证明线线平行,一般构造平行四边形,则对边平行,或是构造三角形中位线.19.(1)或;(2)证明见解析,定点【解析】
(1)设,由题意可知,对的正负分情况讨论,从而求得动点的轨迹的方程;(2)设其方程为,与抛物线方程联立,利用韦达定理得到,所以,所以直线的方程可表示为,即,所以直线恒过定点.【详解】(1)设,动点到定点的距离比到轴的距离多,,时,解得,时,解得.动点的轨迹的方程为或(2)证明:如图,设,,由题意得(否则)且,所以直线的斜率存在,设其方程为,将与联立消去,得,由韦达定理知,,①显然,,,,将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点.【点睛】本题主要考查了动点轨迹,考查了直线与抛物线的综合,是中档题.20.(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可;(Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.【详解】解:(Ⅰ)当时,,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:.∴当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是.(Ⅱ)对任意的和,恒成立等价于:,,恒成立.即,,恒成立.令:,,,则得,由此可得:在区间上单调递减,在区间上单调递增,∴当时,,即又∵,∴实数的取值范围是:.【点睛】本题主要考查导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030饲料抗氧化剂行业竞争格局分析及投资前景与战略规划研究报告
- 2025-2030食品包装设计产业发展分析及发展趋势与投资前景预测报告
- 2025-2030防伪标识产业市场发展分析及前景趋势与投资战略研究报告
- 吉林省汪清县第三中学校七年级信息技术上册吉教版教学设计
- 部编版二年级语文下册教学计划资源整合
- 餐饮行业疫情防控管理措施
- 物业管理数字化转型节支增收方案
- 2025年幼儿园大班习惯养成教育计划
- 酒店管理项目人力与设施资源计划
- 九年级物理下册 18.1 能源利用与社会发展教学设计 (新版)苏科版
- 大数据分析和可视化平台使用手册
- 2025年杭州医学院考研试题及答案
- 2025年骨科入科考试题及答案
- 2025年山西工程职业学院单招职业倾向性测试题库含答案
- 基于三新背景下的2025年高考生物二轮备考策略讲座
- 医疗机构自杀风险评估与预防措施
- 全国自考《银行会计学》2024年7月《银行会计学》自学考试试题及答案
- 术前预防感染
- 拔高卷-2021-2022学年七年级语文下学期期中考前必刷卷(福建专用)(考试版)
- CNAS-SC175:2024 基于ISO IEC 2000-1的服务管理体系认证机构认可方案
- 《汶川县全域旅游发展总体规划(2021-2030)》
评论
0/150
提交评论