2025届山东青岛平度第三中学高三预测金卷(数学试题理)_第1页
2025届山东青岛平度第三中学高三预测金卷(数学试题理)_第2页
2025届山东青岛平度第三中学高三预测金卷(数学试题理)_第3页
2025届山东青岛平度第三中学高三预测金卷(数学试题理)_第4页
2025届山东青岛平度第三中学高三预测金卷(数学试题理)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东青岛平度第三中学高三预测金卷(数学试题理)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.2.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则()A. B. C. D.3.若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)4.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.35.已知向量,,则向量在向量上的投影是()A. B. C. D.6.已知向量,是单位向量,若,则()A. B. C. D.7.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.8.已知实数,则的大小关系是()A. B. C. D.9.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A. B.C. D.10.已知定义在上的函数满足,且当时,,则方程的最小实根的值为()A. B. C. D.11.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件12.若数列满足且,则使的的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_____时,外心的横坐标最大.14.若的展开式中所有项的系数之和为,则______,含项的系数是______(用数字作答).15.在直角三角形中,为直角,,点在线段上,且,若,则的正切值为_____.16.已知复数,且满足(其中为虚数单位),则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,.(1)求椭圆的方程;(2)延长分别交椭圆于点(不重合).设,求的最小值.18.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.19.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为4sin.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.20.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.21.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点,直线l与曲线C交于不同的两点A、B,求的值.22.(10分)已知函数(1)已知直线:,:.若直线与关于对称,又函数在处的切线与垂直,求实数的值;(2)若函数,则当,时,求证:①;②.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.2.D【解析】

根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,,即,,由函数的单调区间知,,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.3.C【解析】

求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【详解】由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.令x3+x2-=-,得x=0或x=-3,则结合图象可知,解得a∈[-3,0),故选C.【点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.4.B【解析】

过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.5.A【解析】

先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.6.C【解析】

设,根据题意求出的值,代入向量夹角公式,即可得答案;【详解】设,,是单位向量,,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.7.D【解析】

先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.8.B【解析】

根据,利用指数函数对数函数的单调性即可得出.【详解】解:∵,∴,,.∴.故选:B.【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.9.B【解析】

设,则,,因为,所以.若,则,所以,所以,不符合题意,所以,则,所以,所以,,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率.故选B.10.C【解析】

先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,,所以,故当时,,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,,则,即,此时令,得,所以最小实根为411.故选:C.【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.11.A【解析】

根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.12.C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

由已知可得、的坐标,求得的垂直平分线方程,联立已知直线方程与椭圆方程,求得的垂直平分线方程,两垂直平分线方程联立求得外心的横坐标,再由导数求最值.【详解】如图,由已知条件可知,不妨设,则外心在的垂直平分线上,即在直线,也就是在直线上,联立,得或,的中点坐标为,则的垂直平分线方程为,把代入上式,得,令,则,由,得(舍)或.当时,,当时,.当时,函数取极大值,亦为最大值.故答案为:.【点睛】本题考查直线与椭圆位置关系的应用,训练了利用导数求最值,是中等题.14.【解析】的展开式中所有项的系数之和为,,,项的系数是,故答案为(1),(2).15.3【解析】

在直角三角形中设,,,利用两角差的正切公式求解.【详解】设,,则,故.故答案为:3【点睛】此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.16.【解析】

计算出,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【详解】,所以,所以.故答案为:-8【点睛】此题考查复数的基本运算和概念辨析,需要熟练掌握复数的运算法则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)根据题意直接计算得到,,得到椭圆方程.(2)不妨设,且,设,代入数据化简得到,故,得到答案.【详解】(1),所以,,化简得,所以,,所以方程为;(2)由题意得,不在轴上,不妨设,且,设,所以由,得,所以,由,得,代入,化简得:,由于,所以,同理可得,所以,所以当时,最小为【点睛】本题考查了椭圆方程,椭圆中的向量运算和最值,意在考查学生的计算能力和综合应用能力.18.(1)(2)【解析】

(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.19.(1)(2)(2,).【解析】

(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)∵曲线C的极坐标方程为,∴,则,即.(2),∴,联立可得,(舍)或,公共点(,3),化为极坐标(2,).【点睛】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极坐标和直角坐标的转化公式是求解的关键,交点问题一般是统一一种坐标形式求解后再进行转化,侧重考查数学运算的核心素养.20.(1)见解析,40元(2)6000元【解析】

(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【点睛】考查离散型随机变量的分布列及其期望的求法,中档题.21.(1),(2)【解析】

(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;(2)由于在直线上,写出直线的标准参数方程参数方程,代入曲线的方程利用参数的几何意义即可得出求解即可.【详解】(1)直线的普通方程为,即,根据极坐标与直角坐标之间的相互转化,,,而,则,即,故直线l的普通方程为,曲线C的直角坐标方程(2)点在直线l上,且直线的倾斜角为,可设直线的参数方程为:(t为参数),代入到曲线C的方程得,,,由参数的几何意义知.【点睛】熟练掌握极坐标与直角坐标的互化公式、方程思想、直线的参数方程中的参数的几何意义是解题的关键,难度一般.22.(1)(2)①证明见解析②证明见解析【解析】

(1)首先根据直线关于直线对称的直线的求法,求得的方程及其斜率.根据函数在处的切线与垂直列方程,解方程求得的值.(2)①构造函数,利用的导函数证得当时,,由此证得.②由①知成立,整理得成立.利用构造函数法证得,由此得到,即,化简后得到.【详解】(1)由解得必过与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论