2025版高考数学大一轮复习第十一章统计与统计案例第2讲用样本估计总体分层演练理含解析新人教A版_第1页
2025版高考数学大一轮复习第十一章统计与统计案例第2讲用样本估计总体分层演练理含解析新人教A版_第2页
2025版高考数学大一轮复习第十一章统计与统计案例第2讲用样本估计总体分层演练理含解析新人教A版_第3页
2025版高考数学大一轮复习第十一章统计与统计案例第2讲用样本估计总体分层演练理含解析新人教A版_第4页
2025版高考数学大一轮复习第十一章统计与统计案例第2讲用样本估计总体分层演练理含解析新人教A版_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1第2讲用样本估计总体1.把样本容量为20的数据分组,分组区间与频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70],2,则在区间[10,50)上的数据的频率是()A.0.05 B.0.25C.0.5 D.0.7解析:选D.由题知,在区间[10,50)上的数据的频数是2+3+4+5=14,故其频率为eq\f(14,20)=0.7.2.(2024·广西三市第一次联考)在如图所示一组数据的茎叶图中,有一个数字被污染后模糊不清,但曾计算得该组数据的极差与中位数之和为61,则被污染的数字为()A.1 B.2C.3 D.4解析:选B.由题图可知该组数据的极差为48-20=28,则该组数据的中位数为61-28=33,易得被污染的数字为2.3.(2024·岳阳模拟)某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元 B.8万元C.10万元 D.12万元解析:选C.设11时到12时的销售额为x万元,依题意有eq\f(2.5,x)=eq\f(0.10,0.40),解得x=10.4.(2024·高考全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入改变状况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入削减B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A.法一:设建设前经济收入为a,则建设后经济收入为2a,则由饼图可得建设前种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a.建设后种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,养殖收入与第三产业收入的总和为1.16a,所以新农村建设后,种植收入削减是错误的.故选A.法二:因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是削减,所以A是错误的.故选A.5.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为()A.1 B.2C.3 D.4解析:选D.由题意这组数据的平均数为10,方差为2,可得:x+y=20,(x-10)2+(y-10)2=8,设x=10+t,y=10-t,由(x-10)2+(y-10)2=8,得t2=4,所以|x-y|=2|t|=4.6.(2024·湖南省五市十校联考)某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成果的茎叶图如图所示,其中甲组学生成果的平均数是88,乙组学生成果的中位数是89,则n-m的值是________.解析:由甲组学生成果的平均数是88,可得eq\f(70+80×3+90×3+(8+4+6+8+2+m+5),7)=88,解得m=3.由乙组学生成果的中位数是89,可得n=9,所以n-m=6.答案:67.为了普及环保学问,增加环保意识,某高校有300名员工参与环保学问测试,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.现在要从第1,3,4组中用分层抽样的方法抽取16人,则在第4组中抽取的人数为________.解析:依据频率分布直方图得,第1,3,4组的频率之比为1∶4∶3,所以用分层抽样的方法抽取16人时,在第4组中应抽取的人数为16×eq\f(3,1+4+3)=6.答案:68.(2024·成都市其次次诊断性检测)在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1,那么这组数据的方差s2可能的最大值是________.解析:由题意可设两个被污损的数据分别为10+a,b,(a,b∈Z,0≤a≤9),则10+a+b+9+10+11=50,即a+b=10,b=10-a,所以s2=eq\f(1,5)[(9-10)2+(10-10)2+(11-10)2+(10+a-10)2+(b-10)2]=eq\f(1,5)[2+a2+(b-10)2]=eq\f(2,5)(1+a2)≤eq\f(2,5)×(1+92)=32.8.答案:32.89.某校1200名高三年级学生参与了一次数学测验(满分为100分),为了分析这次数学测验的成果,从这1200人的数学成果中随机抽取200人的成果绘制成如下的统计表,请依据表中供应的信息解决下列问题:成果分组频数频率平均分[0,20)30.01516[20,40)ab32.1[40,60)250.12555[60,80)c0.574[80,100]620.3188(1)求a、b、c的值;(2)假如从这1200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P(注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解:(1)由题意可得,b=1-(0.015+0.125+0.5+0.31)=0.05,a=200×0.05=10,c=200×0.5=100.(2)依据已知,在抽出的200人的数学成果中,及格的有162人.所以P=eq\f(162,200)=eq\f(81,100)=0.81.(3)这次数学测验样本的平均分为eq\o(x,\s\up6(-))=eq\f(16×3+32.1×10+55×25+74×100+88×62,200)=73,所以这次数学测验的年级平均分大约为73分.10.(2024·高考北京卷)某高校艺术专业400名学生参与某次测评,依据男女学生人数比例,运用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解:(1)依据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)依据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.所以总体中分数在区间[40,50)内的人数估计为400×eq\f(5,100)=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×eq\f(1,2)=30.所以样本中的男生人数为30×2=60,女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以依据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.1.(2024·长春模拟)某销售公司为了解员工的月工资水平,从1000位员工中随机抽取100位员工进行调查,得到如下的频率分布直方图:(1)试由此图估计该公司员工的月平均工资;(2)该公司的工资发放是以员工的营销水平为重要依据来确定的,一般认为,工资低于4500元的员工属于学徒阶段,没有营销阅历,若进行营销将会失败;高于4500元的员工属于成熟员工,进行营销将会胜利.现将该样本依据“学徒阶段工资”“成熟员工工资”分成两层,进行分层抽样,从中抽出5人,在这5人中任选2人进行营销活动.活动中,每位员工若营销胜利,将为公司赚得3万元,否则公司将损失1万元.试问在此次竞赛中公司收入多少万元的可能性最大?解:(1)估计该公司员工的月平均工资为0.0001×1000×2000+0.0001×1000×3000+0.0002×1000×4000+0.0003×1000×5000+0.0002×1000×6000+0.0001×1000×7000=4700(元).(2)抽取比为eq\f(5,100)=eq\f(1,20),从工资在[1500,4500)内的员工中抽出100×(0.1+0.1+0.2)×eq\f(1,20)=2人,设这两位员工分别为1,2;从工资在[4500,7500]内的员工中抽出100×(0.3+0.2+0.1)×eq\f(1,20)=3人,设这三位员工分别为A,B,C.从中任选2人,共有以下10种不同的等可能结果:(1,2),(1,A),(1,B),(1,C),(2,A),(2,B),(2,C),(A,B),(A,C),(B,C).两人营销都胜利,公司收入6万元,有以下3种不同的等可能结果:(A,B),(A,C),(B,C),概率为eq\f(3,10);其中一人营销胜利,一人营销失败,公司收入2万元,有以下6种不同的等可能结果:(1,A),(1,B),(1,C),(2,A),(2,B),(2,C),概率为eq\f(6,10)=eq\f(3,5);两人营销都失败,公司收入-2万元,即损失2万元,有1种结果:(1,2),概率为eq\f(1,10).因为eq\f(1,10)<eq\f(3,10)<eq\f(3,5),所以公司收入2万元的可能性最大.2.(2024·河北三市其次次联考)某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并推断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预料在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X的分布列和均值.解:(1)eq\o(x,\s\up6(-))甲=eq\f(1,8)(7+9+11+13+13+16+23+28)=15,eq\o(x,\s\up6(-))乙=eq\f(1,8)(7+8+10+15+17+19+21+23)=15,seq\o\al(2,甲)=eq\f(1,8)[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,seq\o\al(2,乙)=eq\f(1,8)[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)依据统计结果,在一次周练中,甲和乙失分超过15分的概率分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论