




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
17.2勾股定理的逆定理第十七章勾股定理第2课时勾股定理的逆定理的应用讲授新课当堂练习课堂小结新课导入目录新课导入教学目标教学重点学习目标1.灵活应用勾股定理及其逆定理解决实际问题.(重点)2.将实际问题转化成用勾股定理的逆定理解决的数学问题.(难点)新课导入问题
前面的学习让我们对勾股定理及其逆定理的知识有了一定的认识,你能说出它们的内容吗?回顾与思考a2+b2=c2(a,b为直角边,c为斜边)Rt△ABC,∠C是直角勾股定理勾股定理的逆定理a2+b2=c2(a,b为较短边,c为最长边)Rt△ABC,且∠C是直角.思考
前面我们已经学会了用勾股定理解决生活中的很多问题,那么勾股定理的逆定理能解决哪些实际问题呢?你能举举例吗?讲授新课典例精讲归纳总结讲授新课一、勾股定理的逆定理的应用12例1
如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NEP
QR问题1
认真审题,弄清已知是什么?要解决的问题是什么?12NEP
QR16×1.5=2412×1.5=1830“远航”号的航向、两艘船的一个半小时后的航程及距离已知,如图.问题2
由于我们现在所能得到的都是线段长,要求角,由此你联想到了什么?实质是要求出两艘船航向所成角.勾股定理逆定理解:根据题意得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30海里.∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.
由“远航”号沿东北方向航行可知∠1=45°.∴∠2=45°,即“海天”号沿西北方向航行.
NEP
QR12
解决实际问题的步骤:
构建几何模型(从整体到局部);
标注有用信息,明确已知和所求;
应用数学知识求解.归纳:例2
一个零件的形状如图
所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图
所示,这个零件符合要求吗?DABC4351312DABC图
图
在△BCD中,
∴△BCD
是直角三角形,∠DBC是直角.因此,这个零件符合要求.解:在△ABD中,
∴△ABD
是直角三角形,∠A是直角.DABC4351312图
例3
如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.解析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断△ACD是直角三角形.ADBC341312二、勾股定理及其逆定理的综合应用解:连接AC.ADBC341312在Rt△ABC中,在△ACD中,AC2+CD2=52+122=169=AD2,∴△ACD是直角三角形,且∠ACD=90°.∴S四边形ABCD=SRt△ABC+SRt△ACD=6+30=36.归纳:四边形问题对角线是常用的辅助线,它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是“黄金搭挡”,经常配套使用.【变式题】
如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD的面积.解:连接BD.在Rt△ABD中,由勾股定理得
BD2=AB2+AD2,∴BD=5m.又∵CD=12cm,BC=13cm,∴
BC2=CD2+BD2,∴△BDC是直角三角形.∴S四边形ABCD=SRt△BCD-SRt△ABD=BD•CD-
AB•AD=×(5×12-3×4)=24
(cm2).CBAD(1)证明:∵CD=1,BC=5,BD=2,∴CD2+BD2=BC2,∴△BDC是直角三角形;(2)解:设腰长AB=AC=x,在Rt△ADB中,∵AB2=AD2+BD2,∴x2=(x-1)2+22,解得用到了方程的思想例4
如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=5,BD=2.(1)求证:△BCD是直角三角形;(2)求△ABC的面积.当堂练习当堂反馈即学即用当堂练习1.医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东
的方向.东医院公园超市北65°2.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.解:∵出发2小时,A组行了12×2=24(km),B组行了9×2=18(km),又∵A,B两组相距30km,且有242+182=302,∴A,B两组行进的方向成直角.
3.如图是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.
4.如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30cm2,DC=12cm,AB=3cm,BC=4cm,求△ABC的面积.解:∵S△ACD=30cm2,DC=12cm.∴AC=5cm.又∵∴△ABC是直角三角形,∠B是直角.∴DCBA5.在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A的前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B.此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?解:根据题意得OA=16×1.5=24(海里),OB=12×1.5=18(海里),∵OB2+OA2=242+182=900,AB2=302=900,∴OB2+OA2=AB2,∴∠AOB=90°.∵第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浮肿的诊断与鉴别诊断
- 法律咨询服务中介合同模板
- 城市公交天然气运输合同
- 艾滋病防治健康知识讲座
- 水痘患者的治疗与护理
- 净业环保水处理设备生产建设项目可行性研究报告写作模板-备案审批
- 报废汽车拆解回收再利用项目可行性研究报告写作模板-备案审批
- 玻璃仪器培训
- 2024漯河市召陵区中等专业学校工作人员招聘考试及答案
- 2024湖南中德交通技工学校工作人员招聘考试及答案
- 甘肃省卫生健康委公务员考试招聘112人往年题考
- 数字化赋能护理质量管理研究进展与价值共创视角
- 冲压模具设计与制造工艺考试复习题库(含答案)
- 2025牡丹江辅警考试题库
- 2024年新高考广西高考生物真题试卷及答案
- 2024-2025学年北师大版七年级数学下册期中模拟卷
- 2025部编人教版小学二年级语文下册全册教案
- 电网工程设备材料信息参考价(2024年第四季度)
- 考试失利后的心态调整与复盘
- 2023中国偏头痛诊断与治疗指南
- 2025年度润滑油产品研发与市场销售合作协议2篇
评论
0/150
提交评论