2024-2025学年黑龙江省肇东第一中学高三模拟考试数学试题试卷含解析_第1页
2024-2025学年黑龙江省肇东第一中学高三模拟考试数学试题试卷含解析_第2页
2024-2025学年黑龙江省肇东第一中学高三模拟考试数学试题试卷含解析_第3页
2024-2025学年黑龙江省肇东第一中学高三模拟考试数学试题试卷含解析_第4页
2024-2025学年黑龙江省肇东第一中学高三模拟考试数学试题试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年黑龙江省肇东第一中学高三模拟考试数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数定义域为全体实数,令.有以下6个论断:①是奇函数时,是奇函数;②是偶函数时,是奇函数;③是偶函数时,是偶函数;④是奇函数时,是偶函数⑤是偶函数;⑥对任意的实数,.那么正确论断的编号是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤2.设全集,集合,,则集合()A. B. C. D.3.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.4.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是()A. B. C. D.5.已知全集,集合,则=()A. B.C. D.6.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为()A. B. C.0 D.7.设(是虚数单位),则()A. B.1 C.2 D.8.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B.4月份仅有三个城市居民消费价格指数超过102C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势9.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D.110.已知等比数列满足,,等差数列中,为数列的前项和,则()A.36 B.72 C. D.11.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为()A. B. C. D.12.已知函数是定义域为的偶函数,且满足,当时,,则函数在区间上零点的个数为()A.9 B.10 C.18 D.20二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则函数的极大值为___________.14.若函数与函数,在公共点处有共同的切线,则实数的值为______.15.已知实数满约束条件,则的最大值为___________.16.已知实数x,y满足,则的最大值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.18.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.19.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.20.(12分)已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且.证明:直线与圆相切;求面积的最小值.21.(12分)已知正数x,y,z满足xyzt(t为常数),且的最小值为,求实数t的值.22.(10分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据函数奇偶性的定义即可判断函数的奇偶性并证明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,,此时,故⑥错误;故③④正确.故选:A本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.2.C【解析】∵集合,,∴点睛:本题是道易错题,看清所问问题求并集而不是交集.3.D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.4.B【解析】

根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.【详解】由图象可得,函数的最小正周期为,,,则,,取,,则,,,可得,当时,.故选:B.本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.5.D【解析】

先计算集合,再计算,最后计算.【详解】解:,,.故选:.本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.6.C【解析】

先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.7.A【解析】

先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.【详解】∵,∴.故选:A.本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题.8.D【解析】

采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D本题考查图表的认识,审清题意,细心观察,属基础题.9.B【解析】

过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.10.A【解析】

根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【详解】等比数列满足,,所以,又,所以,由等差数列的性质可得.故选:A本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.11.B【解析】

根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论.【详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.本题考查了正方体的几何特征,考查了空间想象能力,属于基础题.12.B【解析】

由已知可得函数f(x)的周期与对称轴,函数F(x)=f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,作出函数f(x)与g(x)的图象如图,数形结合即可得到答案.【详解】函数F(x)=f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,由f(x)=f(2﹣x),得函数f(x)图象关于x=1对称,∵f(x)为偶函数,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函数周期为2.又∵当x∈[0,1]时,f(x)=x,且f(x)为偶函数,∴当x∈[﹣1,0]时,f(x)=﹣x,g(x),作出函数f(x)与g(x)的图象如图:由图可知,两函数图象共10个交点,即函数F(x)=f(x)在区间上零点的个数为10.故选:B.本题考查函数的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【详解】,故解得,,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.本题考查函数极值的求解,难点是要通过赋值,求出未知量.14.【解析】

函数的定义域为,求出导函数,利用曲线与曲线公共点为由于在公共点处有共同的切线,解得,,联立解得的值.【详解】解:函数的定义域为,,,设曲线与曲线公共点为,由于在公共点处有共同的切线,∴,解得,.由,可得.联立,解得.故答案为:.本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.15.8【解析】

画出可行域和目标函数,根据平移计算得到答案.【详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.本题考查了线性规划问题,画出图像是解题的关键.16.1【解析】

直接用表示出,然后由不等式性质得出结论.【详解】由题意,又,∴,即,∴的最大值为1.故答案为:1.本题考查不等式的性质,掌握不等式的性质是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2).【解析】

(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,,则,求得取最小值时符合的条件,进而求得直线的普通方程.【详解】(1)设点极坐标分别为,,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系.18.(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)设圆心为M(m,0),根据相切得到,计算得到答案.(2)把直线ax﹣y+5=0,代入圆的方程,计算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程为,即x+ay+2﹣4a=0,过点M(2,0),计算得到答案.【详解】(2)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,即|4m﹣29|=2.因为m为整数,故m=2.故所求圆的方程为(x﹣2)2+y2=2.(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以实数a的取值范围是().(3)设符合条件的实数a存在,则直线l的斜率为,l的方程为,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圆心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在实数使得过点P(﹣2,4)的直线l垂直平分弦AB.本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力.19.(1);(2)【解析】

(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.20.证明见解析;1.【解析】

由题意可得椭圆的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论