




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省丰宁满族自治县市级名校2024年中考三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的绝对值是()A. B. C. D.2.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10103.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和BC的长分别为()A.2,π3 B.23,π C.3,2π3 D.234.﹣23的相反数是()A.﹣8 B.8 C.﹣6 D.65.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧的长是()A.π B. C.π D.π6.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③7.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M8.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.125° B.75° C.65° D.55°9.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点10.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有()A.4个 B.3个 C.2个 D.1个11.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-212.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块 B.4块 C.6块 D.9块二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.14.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.15.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____.(写出一个答案即可)16.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.17.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.18.如图,已知,D、E分别是边AB、AC上的点,且设,,那么______用向量、表示三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.20.(6分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.21.(6分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?22.(8分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.23.(8分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.24.(10分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“关联点”有_____;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.25.(10分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=°;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.26.(12分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?27.(12分)观察规律并填空.______(用含n的代数式表示,n是正整数,且n≥2)
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.【详解】在数轴上,点到原点的距离是,所以,的绝对值是,故选C.【点睛】错因分析
容易题,失分原因:未掌握绝对值的概念.2、D【解析】
根据科学记数法的定义可得到答案.【详解】338亿=33800000000=,故选D.【点睛】把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.3、D【解析】试题分析:连接OB,∵OB=4,∴BM=2,∴OM=23,BC=故选D.考点:1正多边形和圆;2.弧长的计算.4、B【解析】∵=﹣8,﹣8的相反数是8,∴的相反数是8,故选B.5、C【解析】
由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.6、B【解析】
根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.7、C【解析】
根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键8、D【解析】
延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°−∠1=180°−125°=55°.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.9、B【解析】
二次函数,所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为-3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.10、B【解析】
根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;故选B.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.11、B【解析】
先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.12、B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、a≤且a≠1.【解析】
根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.14、【解析】
根据正弦和余弦的概念求解.【详解】解:∵P是∠α的边OA上一点,且P点坐标为(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案为【点睛】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.15、答案不唯一,如:AD【解析】
根据勾股定理求出,根据无理数的估算方法解答即可.【详解】由勾股定理得:,.故答案为答案不唯一,如:AD.【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.16、1.【解析】
根据立体图形画出它的主视图,再求出面积即可.【详解】主视图如图所示,∵主视图是由1个棱长均为1的正方体组成的几何体,∴主视图的面积为1×12=1.故答案为:1.【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.17、140°【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,∴EF是△ABD的中位线,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案为:140°.18、【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的运算可得出结果.【详解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案为.【点睛】本题考查了相似三角形的判定和性质以及向量的运算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)①∠OCE=45°;②EF=-2.【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC.∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用内角和定理,得:∠OCE=45°.②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,则EF=GE-FG=-2.【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.20、(1)抛物线的解析式是.直线AB的解析式是.(2).(3)P点的横坐标是或.【解析】
(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.【详解】解:(1)把A(3,0)B(0,-3)代入,得解得所以抛物线的解析式是.设直线AB的解析式是,把A(3,0)B(0,)代入,得解得所以直线AB的解析式是.(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时==.(3)若存在,则可能是:①P在第四象限:平行四边形OBMP,PM=OB=3,PM最长时,所以不可能.②P在第一象限平行四边形OBPM:PM=OB=3,,解得,(舍去),所以P点的横坐标是.③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),①,所以P点的横坐标是.所以P点的横坐标是或.21、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得x+2y=解得x=答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得100a+15010-a解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.22、(1)证明见解析;(2)【解析】试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
(2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.试题解析:(1)证明:过点O作OG⊥DC,垂足为G.
∵AD∥BC,AE⊥BC于E,
∴OA⊥AD.
∴∠OAD=∠OGD=90°.
在△ADO和△GDO中,
∴△ADO≌△GDO.
∴OA=OG.
∴DC是⊙O的切线.
(2)如图所示:连接OF.
∵OA⊥BC,
∴BE=EF=BF=1.在Rt△OEF中,OE=5,EF=1,∴OF=,∴AE=OA+OE=13+5=2.
∴tan∠ABC=.【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.23、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】
问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,×1000+×1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为1.24、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).【解析】
(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;【详解】(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD的“关联点”为P2,P3;(2)作正方形ABCD的内切圆和外接圆,∴OF=1,,.∵E是正方形ABCD的“关联点”,∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),∵点E在直线上,∴点E在线段FG上.分别作FF’⊥x轴,GG’⊥x轴,∵OF=1,,∴,.∴.根据对称性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵线段MN上的每一个点都是正方形ABCD的“关联点”,①MN与小⊙Q相切于点F,如图3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如图4中,∵,,∴.∴.综上:.【点睛】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.25、(1)125;(2)详见解析;(3)45°<α<90°.【解析】
(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)证明△ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025物业租赁权转让合同(律师版)
- 2025租房合同模板(英文版)
- 2025年贵州省房屋买卖合同
- 2025写字楼租赁合同样本
- 提升工作效率的方法与实践计划
- 图书馆志愿者计划
- 主题班会教学工作计划
- 薪酬体系设计计划
- 加强企业文化建设的年度方案计划
- 2025雇佣合同,公司劳动合同范本
- 自动转运小车结构及控制系统设计说明书
- 《医学心理学》课件:第11章 医患关系
- 饮水设备巡查维护记录表
- 洛阳十三朝古都课件
- RomaxDesigner 培训教程(合)教学提纲
- 《中国传统服饰——汉服》PPT课件
- 顾洁Storytime
- 小学信息技术认识《画图》
- 【精品】宇通客车涂装车间实习报告
- 冷冻机的制冷效率与运行电费
- 物业服务流程图
评论
0/150
提交评论