2025届高考数学二轮复习第二部分专题三立体几何第2讲空间平行与垂直专题强化练理_第1页
2025届高考数学二轮复习第二部分专题三立体几何第2讲空间平行与垂直专题强化练理_第2页
2025届高考数学二轮复习第二部分专题三立体几何第2讲空间平行与垂直专题强化练理_第3页
2025届高考数学二轮复习第二部分专题三立体几何第2讲空间平行与垂直专题强化练理_第4页
2025届高考数学二轮复习第二部分专题三立体几何第2讲空间平行与垂直专题强化练理_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE1-第2讲空间平行与垂直A级基础通关一、选择题1.在正方体ABCD­A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1 B.A1E⊥BDC.A1E⊥BC1 D.A1E⊥AC解析:如图,由题设知,A1B1⊥平面BCC1B1,从而A1B1⊥BC1.又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD.又A1E⊂平面A1B1CD,所以A1E⊥BC1.答案:C2.(2024·全国卷Ⅰ)在长方体ABCD­A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.6eq\r(2)C.8eq\r(2)D.8eq\r(3)解析:连接BC1,AC1,AC,因为AB⊥平面BB1C1C,所以∠AC1B=30°,AB⊥BC1,所以△ABC1为直角三角形.又AB=2,所以BC1=2eq\r(3).又B1C1=2,所以BB1=eq\r((2\r(3))2-22)=2eq\r(2),故该长方体的体积V=2×2×2eq\r(2)=8eq\r(2).答案:C3.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则点E到平面ABC1D1的距离为()A.eq\f(\r(3),2) B.eq\f(\r(2),2) C.eq\f(1,2) D.eq\f(\r(3),3)解析:因为A1B1∥AB,所以EB1∥AB,因此点E到平面ABC1D1的距离转化为点B1到平面的距离,取BC1的中点O,则OB1⊥BC1,OB1⊥AB,所以B1O⊥平面ABC1D1,则B1O为所求的距离.因此B1O=eq\f(\r(2),2)是点E到平面ABC1D1的距离.答案:B4.(2024·全国卷Ⅱ)在正方体ABCD­A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.eq\f(\r(2),2) B.eq\f(\r(3),2) C.eq\f(\r(5),2) D.eq\f(\r(7),2)解析:如图,因为AB∥CD,所以AE与CD所成的角为∠EAB.在Rt△ABE中,设AB=2,则BE=eq\r(5),则tan∠EAB=eq\f(BE,AB)=eq\f(\r(5),2),所以异面直线AE与CD所成角的正切值为eq\f(\r(5),2).故选C.答案:C5.对于四面体A­BCD,有以下命题:①若AB=AC=AD,则AB,AC,AD与底面所成的角相等;②若AB⊥CD,AC⊥BD,则点A在底面BCD内的射影是△BCD的内心;③四面体A­BCD的四个面中最多有四个直角三角形;④若四面体A­BCD的6条棱长都为1,则它的内切球的表面积为eq\f(π,6).其中正确的命题序号是()A.①③ B.③④ C.①②③ D.①③④解析:①正确,若AB=AC=AD,则AB,AC,AD在底面的射影相等,即与底面所成角相等;②不正确,如图1,点A在平面BCD的射影为点O,连接BO,CO,可得BO⊥CD,CO⊥BD,所以点O是△BCD的垂心;③正确,如图2,若AB⊥平面BCD,∠BCD=90°,则四面体A­BCD的四个面均为直角三角形;④正确,设正四面体的内切球的半径为r,棱长为1,高为eq\f(\r(6),3),依据等体积公式eq\f(1,3)×S×eq\f(\r(6),3)=eq\f(1,3)×4×S×r,解得r=eq\f(\r(6),12),那么内切球的表面积S=4πr2=eq\f(π,6).故正确的命题是①③④.答案:D二、填空题6.如图,在空间四边形ABCD中,点M∈AB,点N∈AD,若eq\f(AM,MB)=eq\f(AN,ND),则直线MN与平面BDC的位置关系是________.解析:由eq\f(AM,MB)=eq\f(AN,ND),得MN∥BD.而BD⊂平面BDC,MN⊄平面BDC,所以MN∥平面BDC.答案:平行7.在斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的点,若平面BC1D∥平面AB1D1,则eq\f(AD,DC)=________.解析:如图所示,连接A1B,与AB1交于点O,连接OD1,因为平面BC1D∥平面AB1D1,平面BC1D∩平面A1BC1=BC1,平面A1BC1∩平面AB1D1=D1O,所以BC1∥D1O.所以eq\f(A1D1,D1C1)=eq\f(A1O,OB).同理AD1∥DC1,所以eq\f(A1D1,D1C1)=eq\f(DC,AD),因此eq\f(A1O,OB)=eq\f(DC,AD),又因为eq\f(A1O,OB)=1,所以eq\f(DC,AD)=1,即eq\f(AD,DC)=1.答案:18.在正方体ABCD­A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________(填序号).①AC⊥BE;②B1E∥平面ABCD;③三棱锥E­ABC的体积为定值;④直线B1E⊥直线BC1.解析:因AC⊥平面BDD1B1,而BE⊂平面BDD1B,故①正确;因B1D1∥平面ABCD,故②正确;记正方体的体积为V,则VE­ABC=eq\f(1,6)V,为定值,故③正确;B1E与BC1不垂直,故④错误.答案:①②③三、解答题9.(2024·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.10.(2024·北京卷)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.(1)证明:因为PA⊥平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.(2)证明:因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.又AB∩PA=A,所以AE⊥平面PAB.因为AE⊂平面PAE,所以平面PAB⊥平面PAE.(3)解:棱PB上存在点F,使得CF∥平面PAE.取PB的中点F,PA的中点G,连接CF,FG,EG,则FG∥AB,且FG=eq\f(1,2)AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=eq\f(1,2)AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.B级实力提升11.(2024·全国卷Ⅰ)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为eq\r(3),那么P到平面ABC的距离为________.解析:如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.再过O作OE⊥AC于E,OF⊥BC于F,连接PC,PE,PF,则PE⊥AC,PF⊥BC.又PE=PF=eq\r(3),所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=eq\r(3),所以CE=1,所以OE=1,所以PO=eq\r(PE2-OE2)=eq\r((\r(3))2-12)=eq\r(2).答案:eq\r(2)12.(2024·河南郑州其次次质量预料)如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=eq\f(π,3),△PAD是等边三角形,F为AD的中点,PD⊥BF.(1)求证:AD⊥PB;(2)若E在线段BC上,且EC=eq\f(1,4)BC,能否在棱PC上找到一点G,使平面DEG⊥平面ABCD?若存在,求出三棱锥D-CEG的体积;若不存在,请说明理由.(1)证明:连接PF,因为△PAD是等边三角形,F是AD的中点,所以PF⊥AD.因为底面ABCD是菱形,∠BAD=eq\f(π,3),所以BF⊥AD.又PF∩BF=F,所以AD⊥平面BFP.又PB⊂平面BFP,所以AD⊥PB.(2)解:能在棱PC上找到一点G,使平面DEG⊥平面ABCD.由(1)知AD⊥BF,因为PD⊥BF,AD∩PD=D,所以BF⊥平面PAD.又BF⊂平面ABCD,所以平面ABCD⊥平面PAD,又平面ABCD∩平面PAD=AD,且PF⊥AD,所以PF⊥平面ABCD.连接CF交DE于点H,过H作HG∥PF交PC于G,所以GH⊥平面ABCD.又GH⊂平面DEG,所以平面DEG⊥平面ABCD.因为AD∥BC,所以△DFH∽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论