复数的几何意义课件高一下学期数学人教A版6_第1页
复数的几何意义课件高一下学期数学人教A版6_第2页
复数的几何意义课件高一下学期数学人教A版6_第3页
复数的几何意义课件高一下学期数学人教A版6_第4页
复数的几何意义课件高一下学期数学人教A版6_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7.1.2复数的几何意义

第七章复数1.虚数单位i的引入,数系的扩充;2.复数有关概念:复数的代数形式:复数的实部、虚部复数相等复数的分类复习回顾在几何上,我们用什么来表示实数?实数数轴上的点(形)(数)一一对应想一想?x01实数的几何模型:实数可以用数轴上的点来表示.情景导入思考:

类比实数的表示,复数又有什么几何

意义呢?情景导入实部虚部其中为虚数单位复数的一般形式

复数

z=a+bi有序实数对(a,b)直角坐标系中的

Z(a,b)(数)(形)一一对应一一对应一一对应1.复数的几何表示新知探究xyOZ(a,b)建立了平面直角坐标系来表示复数的平面——复平面x轴——实轴y轴——虚轴abz=a+bi这是复数的一种几何意义.新知讲授复数

z=a+bi直角坐标系中的

Z(a,b)(数)(形)一一对应实轴上的点表示实数,虚轴上的点除原点外都表示纯虚数,各象限内的点表示实部不为零的虚数.思考:一般地,实轴上的点,虚轴上的点,各象限内的点

分别表示什么样的数?新知探究xyOZ(a,b)abz=a+bi2.复数的向量表示

新知探究复数

z=a+bi直角坐标系中的

Z(a,b)(数)(形)一一对应一一对应一一对应(形)xyOZ(a,b)abz=a+bi

新知讲授xyOZ(a,b)abz=a+bi

复数

z=a+bi

(数)(形)一一对应这是复数的又一种几何意义.实数a的模就是它的绝对值|a|.追问“实数模”是什么?xyOZ(a,b)abz=a+bi

新知讲授共轭复数例题分析

当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.

虚部不等于0的两个共轭复数也叫做共轭虚数.

实数的共轭复数是它本身.3.共轭复数的定义新知讲授解:(1)作图yx(a,b)(a,-b)z1=a+biOyx(a,0)z1=aOxyz1=bi(0,b)(0,-b)O结论:复平面内,共轭复数z1,z2所对应的点关于实轴对称.思考:若z1,z2是共轭复数,那么

(1)在复平面内,它们所对应的点有怎样的位置关系?新知讲授

新知讲授复数的模其实是实数绝对值概念的推广

复数

z=a+bi的模就是复数

z=a+bi在复平面上对应的点Z(a,b)到原点的距离.4.复数的模的几何意义新知讲授xyOZ(a,b)abz=a+bi

例题分析1.下列命题中的假命题是()A.在复平面内,对应于实数的点都在实轴上B.在复平面内,对应于纯虚数的点都在虚轴上C.在复平面内,实轴上的点所对应的复数都是实数D.在复平面内,虚轴上的点所对应的复数都是纯虚数D牛刀小试2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的()A.必要不充分条件B.充分不必要条件C.充要条件D.不充分不必要条件C牛刀小试3.在复平面内,描出下列各复数的点:xyO⑴2+5i;⑵-3+2i;⑶2-4i;⑷-3-i;⑸5;⑹-3i.牛刀小试⑵⑷⑶⑸⑴⑹4.已知复数z=(m2+m-6)+(m2+m-2)i在复

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论