




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CenterforSecurityandEmergingTechnology|1
ExecutiveSummary
Policymakersaredebatingtherisksthatnewadvancedartificialintelligence(AI)
technologiescanposeifintentionallymisused:fromgeneratingcontentfor
disinformationcampaignstoinstructinganovicehowtobuildabiologicalagent.
Becausethetechnologyisimprovingrapidlyandthepotentialdangersremainunclear,assessingriskisanongoingchallenge.
Malicious-userisksareoftenconsideredtobeafunctionofthelikelihoodandseverityofthebehaviorinquestion.WefocusonthelikelihoodthatanAItechnologyis
misusedforaparticularapplicationandleaveseverityassessmentstoadditionalresearch.
TherearemanystrategiestoreduceuncertaintyaboutwhetheraparticularAIsystem
(callitX)willlikelybemisusedforaspecificmaliciousapplication(callitY).We
describehowresearcherscanassessthelikelihoodofmalicioususeofadvancedAIsystemsatthreestages:
1.Plausibility(P)
2.Performance(P)
3.Observeduse(Ou)
PlausibilitytestsconsiderwhethersystemXcandobehaviorYatall.Performance
testsaskhowwellXcanperformY.InformationaboutobservedusetrackswhetherXisusedtodoYintherealworld.
Familiaritywiththesethreestagesofassessment—includingthemethodsusedateachstage,alongwiththeirlimitations—canhelppolicymakerscriticallyevaluate
claimsaboutAImisusethreats,contextualizeheadlinesdescribingresearchfindings,andunderstandtheworkofthenewlycreatednetworkofAIsafetyinstitutes.
ThisIssueBriefsummarizesthekeypointsin:JoshA.GoldsteinandGirishSastry,
“The
PPOuFramework:AStructuredApproachforAssessingtheLikelihoodofMalicious
UseofAdvancedAISystems,
”ProceedingsoftheAAAI/ACMConferenceonAI,Ethics,andSociety7,no.1(2024):503–518.
CenterforSecurityandEmergingTechnology|2
Introduction
Concernsaboutbadactorsintentionallymisusingadvancedartificialintelligence(AI)systemsareprevalentandcontroversial.TheseconcernsareprevalentastheyreceivewidespreadmediaattentionandarereflectedinpollsoftheAmericanpublicaswellasinpronouncementsandproposalsbyelectedofficials
.1
Yettheyarecontroversialbecauseexperts—bothinsideandoutsideofAI—expresshighlevelsofdisagreementabouttheextenttowhichbadactorswillmisuseAIsystems,howusefulthese
systemswillbecomparedtonon-AIalternatives,andhowmuchcapabilitieswillchangeinthecomingyears
.2
ThedisagreementaboutmisuserisksfromadvancedAIsystemsisnotmerely
academic.Claimsaboutriskareoftencitedtosupportpolicypositionswithsignificantsocietalimplications,includingwhethertomakemodelsmoreorlessaccessible,
whetherandhowtoregulatefrontierAIsystems,andwhethertohaltdevelopmentofmorecapableAIsystems
.3
Ifviewsofmisuseriskswillinformpolicy,itiscriticalfor
policymakerstounderstandhowtoevaluatemalicious-useresearch.
Inanewpaper
“ThePPOuFramework:AStructuredApproachforAssessingthe
LikelihoodofMaliciousUseofAdvancedAISystems,
”publishedintheProceedingsoftheSeventhAAAI/ACMConferenceonAI,Ethics,andSociety,weprovideaframeworkforthinkingthroughthelikelihoodthatanadvancedAIsystem(callitX)willbe
misusedforaparticularmaliciousapplication(callitY)
.4
Theframeworklaysoutthreedifferentstagesforassessingthelikelihoodofmalicioususe:
1.Plausibility(P):CansystemXperformmaliciousbehaviorYevenonce?
2.Performance(P):HowwellcansystemXperformmaliciousbehaviorY?
3.Observeduse(Ou):IssystemXusedformaliciousbehaviorYintherealworld?
Onceapotentialmisuseriskhasbeenidentified,researcherscaninvestigatetheriskateachstageoutlinedinFigure1.Thefigurealsosummarizesthekeymethodologiesandchallengesateachstage.
CenterforSecurityandEmergingTechnology|3
Figure1.ThePPOuFrameworkSummary
Researchateachofthesethreestagesaddressesdifferentformsofuncertainty.For
example,whiledemonstrationsattheplausibilitystagemaybeabletoshowthat
systemXcanbeusedforbehaviorY(orabehaviorsimilartoY)once,theywillleaveuncertaintyabouthowusefulXwouldbeforpotentialbadactors.Riskassessmentsattheperformancestagecanhelpmodelthemarginalutilityforbadactors,butactual
useofXbybadactorsmaydifferfromresearchexpectations.Observedusecantrack
CenterforSecurityandEmergingTechnology|4
actualapplicationstorightsizeexpectations,butitwillnotdeterminehowfuturesystemscouldbemisusedorwhetherXwillbeusedforvariantsofYinthefuture.
Wehopethatbylayingoutthesestages,wewillprovidepolicymakerswithabetterunderstandingofthetypesofuncertaintyaboutmalicioususeandwhereresearch
can—andcannot—plugin.InFigure2,weprovideexamplesofthetypesofquestionsresearcherscouldaskateachstagefromthreeriskareas:politicalmanipulation,
biologicalattacks,andcyberoffense.
CenterforSecurityandEmergingTechnology|5
ThePPOuFramework
Figure2.StagesofthePPOuFrameworkandExampleQuestions
Stage
Examplefrompolitical
manipulation
Examplefrom
biologicalattacks
Examplefromcyberoffense
Plausibility
Couldamultimodalagentgenerateanddistributeashort
videoofpartisansinterferingintheelectoralprocess?
*
Couldachatbot
guidea(resourced)undergradthroughtheprocessof
creatingaCategoryBpotential
bioterrorism
agent?
5
Couldalarge-language-model-basedsoftware
agentidentifyandproduce(butnotnecessarily
deliver)aworkingexploitforawidelyusedpieceofsoftware?
Performance
Howrealistic,reliable,andcost-effectivearemultimodalmodelsatgeneratingand
distributingvideosof
partisansattemptingtointerfereinthe
electionprocess?
Howmuchupliftdoesthechatbotprovideover
existingbiologicaldesigntools?
Howmuchdoesitcostto
operatetheagentto
producetheexploit
comparedtoasimilarlyskilledhuman?
Observeduse
Dopeopleuse
multimodalmodelstogenerateand
distributevideosof
partisansattemptingtointerfereinthe
electoralprocess,inpractice?
Dorequest-
responselogs
indicatethatauserisapplyinga
chatbottoguide
themthrough
creatingapotentialbioterrorismagent?
Istherechatteroncriminalforumsthatpeopleare
experimentingwithsuchanagent?
*Onagents,see:HelenToner,JohnBansemer,KyleCrichtonetal.,“ThroughtheChatWindowandInto
theRealWorld:PreparingforAIAgents,”CenterforSecurityandEmergingTechnology,October2024,
/publication/through-the-chat-window-and-into-the-real-world-preparing-
for-ai-agents/.
CenterforSecurityandEmergingTechnology|6
Stage1:Plausibility:CansystemXperformmaliciousbehaviorYevenonce?
ThesimplestwaytotestwhetherthereisariskofsystemXbeingusedformaliciousbehaviorYistoseeifXcandoY,justonce.Red-teamersandstresstestersadoptanadversary’smindsetandprobeanAIsystemfor“identificationofharmfulcapabilities,outputs,orinfrastructurethreats.
”6
Ifamodeldoesnotproduceharmfulbehavioronthefirsttry,thenextstepistoiterate.Researchersusedifferenttechniques,includingimprovingprompts(theinputfedtothemodel,suchasinstructionsorexamples)orfine-tuning(asmallamountofadditionaltraining)amodelforthespecificbehavior.
IfXstillfailstoexhibitY,despiteemployingvarioustechniquesandtricks,thequestion
ThesimplestwaytotestwhetherthereisariskofsystemXbeingusedformaliciousbehaviorYis
toseeifXcandoY,justonce.
naturallybecomes:Howlongshouldonecontinuetrying?Whileresearcherscan
demonstratethatsystemXcanbeusedformalicioususeYbyshowinganexample,
provingthenegative(thatsystemXcannotdoY)ismorechallenging.
BecauseAImodelsareoftengeneral-purposeandourabilitytopredicttheir
capabilitiesisstilladvancing,wemaynotknowwhethersystemXcannotperformY,orwhetherthepromptingstrategiesusedhavebeeninsufficient.Thisisknownasthe
“capabilityelicitationproblem.”Forexample,onepaperfoundthatsimplyprepending“Takeadeepbreath”beforearequestedtaskimprovedperformance
.7
AnalystsmaythusconcludethatasystemcouldplausiblydoYifitgetsclose,withinacertain
marginoferror(knownasa“safetymargin”),toaccountforpossiblegainsfrombetterelicitationtechniques
.8
Thedeterminationaboutwhatqualifiesascloseenoughisa
matterofjudgment.
Toscaleupred-teamingefforts,AIdeveloperscanusebothhumansandmachines.LeadingAIlabsarehiringexternalcontractorstored-teamtheirmodels,allowing
themtoaugmenttheexpertise(andlaborhours)theypossessin-house
.9
ResearchersarealsodevelopingwaystouseAImodelstored-teamothermodels,whichisa
promisingdirectionforfutureresearch
.10
Stage2:Performance:HowwellcansystemXperformmaliciousbehaviorY?
Showingthatasystemcandothemaliciousbehavioronce(Stage1)doesnotmeanitisnecessarilyausefultoolfordoingso.Plausibilitystillleavesalotofuncertainty,
includingaboutthequalityoftheoutput,thereliabilityofthesystem,andhowusefulitiscomparedtoalternativesthatmayhaveexistedbefore.Asaresult,researchat
CenterforSecurityandEmergingTechnology|7
Stage2focusesonaddressingtheseandrelatedquestions,aimingtoreduceuncertaintyabouttheutilityofthesysteminquestion,oftenthroughstaticbenchmarks,experiments,ormodelingmarginalutility.
First,similartotakingawrittentest,researcherswilltestAImodelsagainst
predeterminedsetsofquestions.Forexample,canamodelrecognizeimages?SolvePhD-levelmathproblems?Answerquestionsaboutthelaw?Ifresearchershavea
standardizedsetofquestions,theycancontinuallytestnewmodelsagainstthat
benchmarkasmodelsaredeveloped
.11
Thiscanprovidecomparabilitybetween
modelsatrelativelylowcost.Recently,researchershavealsobeenbuilding
benchmarksforpotentiallyharmfulapplications
.12
Inpractice,however,static
benchmarkscanbedifficulttocreate.Sometimestheyare“polluted”becausethe
modelwasalreadyprovidedwiththeansweraspartofitstrainingset
.13
Othertimes,constructingthemcanbelabor-intensive,necessitatespecializedknowledge,or
requireaccesstoclassifiedmaterial.
Asecondapproachistoconductexperiments,
deliberatelyintroducinganAIsystemorpieceofAI-generatedcontentinanenvironmentto
determineitseffectonoutcomesofinterest.ThiscouldrangefromusingAIinpenetration-testingexercisestousingAItoconvincepeopleagainstconspiracybeliefs
.14
Inlabandsurvey
experiments,researcherscanstudytheeffectsofdifferenttreatments,recruitrespondentsusingexistingpools,andstraightforwardlyensure
Stage2aimstoreduce
uncertaintyabouttheutilityofthesysteminquestion,oftenthroughstatic
benchmarks,experiments,ormodelingmarginal
utility.
informedconsent.However,forassessingmalicious-userisks,researcherswillstill
facelimitationsbecauseofthedutytominimizeharmtorespondents.ThisisespeciallyacuteforfieldexperimentsthattesttheeffectsofanAIsystemintherealworld.
Finally,researchersmaytestforuplift—thatis,howusefulatooliscomparedtoasetofalternatives
.15
Ifasystemcanreliablyproduceinstructionsfordesigninga
bioweapon,butaGooglesearchcoulddothesame,thentheupliftislimited.These
marginalutilitytestsrequireestablishingarelevantsetofalternatives(whichwillvarybasedonthethreatmodel)andoutcomesofinterest.Forexample,ifthegoalisto
assesswhetherlanguagemodelswillbeusefulforpropaganda,uplifttestswould
requireestablishingbaselines(human-writtenpropaganda)andoutcomesofinterest,suchasthecostofrunningacampaignorthenumberofpeoplepersuadedtotakeanaction
.16
CenterforSecurityandEmergingTechnology|8
Performancetestingcouldimproveinseveralways.First,researcherscouldtestfortheequivalentof“scalinglaws”inthemalicious-usedomain
.17
Inotherwords,howmuchriskierinamalicious-usedomaindomodelsbecomewithcertaincapability
improvements(orscaleincreases)?Fromaninstitutionalperspective,thefieldcan
continuetodeveloparrangementsthatminimizeincentiveissues.AIlabsmayhavethebestcapabilityelicitationtechniques,buttheyalsohaveincentivestosandbagornotthoroughlytesttheirownsystems
.18
Inthefuture,governmententitiessuchasAI
safetyinstitutescouldconductasubsetofmalicious-useriskstoensuretestingoccurs
.19
Stage3:ObservedUse:IssystemXusedformaliciousbehaviorYintherealworld?
InStages1and2,researcherscantestwhethersystemXcanbeusedformaliciousbehaviorYandinvestigatehowusefulXmaybe.Whileforecastspriortodeployment
Theobservedusestageshiftsawayfrom
focusingonprojectedscenariostodiscoveringhowbadactorsmisuse
AIsystemsintherealworld.
estimatehowlikelysystemXistobemisused,
researchexpectationsandactualmisusemaydiverge.Policymakersmustrecognizethatpre-deployment
researchmaymisestimaterisksduetocognitivebiases(e.g.,analystsprojectingtheirownassumptionsontoadversaries)orunforeseencapabilities(e.g.,emergentabilitiesofAIsystemsdiscoveredafterdeployment).Historicalexamples—suchasthemisjudgedthreatsofcyberattacksinthe1990s—highlighthowanticipatedriskscandifferfromactualmisuse
.20
Theobservedusestageshiftsawayfromfocusingonprojectedscenariosto
discoveringhowbadactorsmisuseAIsystemsintherealworld.Thisisoften
challenging,asactorsmisusingtoolsmaydeliberatelyobscuretheiractivitiesduetoreputationalrisks,legalconcerns,orfearsthatexposurecouldunderminetheir
effectiveness.
OnemethodforuncoveringmisuseismonitoringbyAIprovidersthemselves.For
example,companiesthatmaketheirnewsystemsavailablethroughanapplication
programminginterfacecouldmonitorrequestsandresponses.OpenAIhasrecentlyreleasedseveralreportsdescribinginfluenceoperationsmisusingitstools
.21
MonitoringbyAIproviderscanbeaneffectivestrategy,becauseitcanexposemisuseearlyinanoperation—forexample,aftercovertpropagandistsbegincreatingcontent,butbeforetheybuildlargefollowings.However,thisstrategyalsofacestrade-offs
relatedtouserprivacy.
CenterforSecurityandEmergingTechnology|9
AsecondroutefordiscoverycomesfromoutsidetheAIcompanies.Open-source
researchersandjournalistscanuncovertheuseofXformaliciousbehaviorY.PotentialroutestodiscoveryincludefindingevidenceofbadactorsusingAIintheirworkflows,interviewingthemtoaskhowtheyuseadvancedAIsystems,monitoringdiscussionsoncriminalforums,andmore.Thenewsoutlet404Mediahasuncoveredarangeof
applicationsofAIonline—includingspamandscams—demonstratingtheroleofjournalistswhocloselytrackonlinedevelopments
.22
Last,researcherscandevelopincidentdatabasestomovebeyondsinglecasestudiesandbetterunderstandpatternsofabuse.TheAIIncidentDatabaseandthePoliticalDeepfakesIncidentsDatabasearetwoongoingefforts.ThosebuildingAIincident
databasescandrawvaluablelessonsfromfieldswithestablishedincidentreportingsystems,suchasairlinesafety,includingconsiderationsofthetrade-offsbetweenvoluntaryandmandatorydisclosure
.23
BecausetheapplicationofXformalicioususeYmaybeintentionallyhidden,theobservedusestagefacesseverallimitations.First,
observationaldataaboutmisusemaynotbe
representativeofthebroaderuniverseofcases,leadingtofaultyconclusionsaboutareasthat
Policymakersshouldbe
carefulnottoover-index
onthemisusethatismosteasilycountable.
requireheightenedattention.Policymakersshouldbecarefulnottoover-indexonthemisusethatismosteasilycountable.Furthermore,evenifobservedusetodayis
representative,itmaynotprojectintothefuture.Newcapabilityelicitationtechniquesorimprovementsinmodelcapabilitiescanleadtosubstantiallydifferentmisusesofsubsequentgenerationsofsystems.Futureeffortscouldempowerexternal
researcherstoworkwithAIcompaniestobetterunderstandmisuse,developincreasinglycapableclassifiersformalicioususe,andscalemonitoringefforts.
CenterforSecurityandEmergingTechnology|10
Conclusion
Eachstageoftheframework—plausibility,performance,andobserveduse—attemptstoreduceuncertaintyaboutthelikelihoodofmisuseofanadvancedAIsystem.Canthemodelperformtheharmfulbehavior,justonce?Howwelldoesitdoso,andhow
usefulisittobadactors?Whatistheexistingevidenceofbadactorsmisusingthetool,orsimilarones,forthisapplicationintherealworld?
Forpolicymakers,thesequestionscanbeusefulwhenencounteringclaimsabout
misuserisks.Forexample,imaginecomingacrossaheadlinethatreads:“AIChatbotsCanGiveInstructionsforCreatingBioweapons.”UsingthePPOuFramework,a
discerningpolicymakermayaskwhetherthatisaplausibilityassessment(e.g.,red-teamingfoundinstructionsonce)oraresultofperformancetesting(e.g.,researchersfoundthesystemcouldgeneratevalidinstructionsreliably).Thepolicymakerthen
mightsearchforfurtherinformation:Howgoodisthechatbot,andcomparedtowhatbaseline?Justbecauseasystemcanbeusedforaparticularmaliciouspurposedoesnotmeanitwillbeintherealworld.PolicymakerscanusethePPOuFrameworkasaguide,whilerecognizingthatsomedegreeofuncertaintyaboutthelikelihoodof
malicioususewillalwaysremain.
Thediversesetofmethodologiesalsohighlightsthatawiderangeofexpertscan
contribute.AsAImodelsbecomeadvancedandhavewiderapplications,buildingupariskassessmentecosystemwillgrowmoreimportant.TheU.S.governmentshould
seektheadviceof,andprovidefundingsupportfor,researcherswithdifferent
substantiveexpertise(suchasmisusedomainsofinterest)aswellasdifferent
methodologicaltraining(forexample,machinelearningorhuman-subject
experiments).IfthenetworkofAIsafetyinstitutesprogresses,it,too,willbestrongerforsolicitingcooperationfromalargetent.
CenterforSecurityandEmergingTechnology|11
Authors
JoshA.GoldsteinisaresearchfellowatGeorgetownUniversity’sCenterforSecurityandEmergingTechnology(CSET),whereheworksontheCyberAIproject.
GoldsteiniscurrentlyonrotationasapolicyadvisorattheCybersecurityand
InfrastructureSecurityAgency(CISA)underanInterdepartmentalPersonnelActagreementwithCSET.HecompletedthisworkbeforestartingatCISA.Theviewsexpressedaretheauthor’sownpersonalviewsanddonotnecessarilyreflecttheviewsofCISAortheDepartmentofHomelandSecurity.
GirishSastryisanindependentpolicyresearcher.
Reference
Thispolicymemosummarizesanoriginalresearchpaper:JoshA.GoldsteinandGirishSastry,
“ThePPOuFramework:AStructuredApproachforAssessingtheLikelihoodof
MaliciousUseofAdvancedAISystems,
”ProceedingsoftheAAAI/ACMConferenceonAI,Ethics,andSociety7,no.1(2024):503-518.
Acknowledgments
Forresearchassistancesupport,wethankAbhiramReddy.Forfeedbackonthe
underlyingpaper,wethankLamaAhmad,MarkusAnderljung,JohnBansemer,EdenBeck,RosieCampbell,DerekChong,JessicaJi,IgorMikolic-Torreira,AndrewReddie,ChrisRohlf,ColinShea-Blymyer,WeiyanShi,TobyShevlane,ThomasWoodside,andparticipantsattheNLPSoDaSConference2023.
©2025bytheCenterforSecurityandEmergingTechnology.ThisworkislicensedunderaCreativeCommonsAttribution-NonCommercial4.0InternationalLicense.
Toviewacopyofthislicense,visit
/licenses/by-nc/4.0/.
DocumentIdentifier:doi:10.51593/20240042
CenterforSecurityandEmergingTechnology|12
Endnotes
1TaylorOrthandCarlBialik,“MajoritiesofAmericansAreConcernedabouttheSpreadofAIDeepfakesandPropaganda,”YouGov,September12,2023,
/technology/articles/46058-
majorities-americans-are-concerned-about-spread-ai;
OfficeofCongressmanDonBeyer,“Ross,BeyerIntroduceLegislationtoRegulateArtificialIntelligenceSecurity,MitigateRiskIncidents,”newsrelease,September23,2024,
/news/documentsingle.aspx?DocumentID=6304.
2SayashKapooretal.,“OntheSocietalImpactofOpenFoundationModels,”arXivpreprint
arXiv:2403.07918
(2024),
/abs/2403.07918;
YoshuaBengioetal.,“InternationalScientificReportontheSafetyofAdvancedAI(InterimReport),”arXivpreprint
arXiv:2412.05282
(2024),
/abs/2412.05282.
3IreneSolaiman,“TheGradientofGenerativeAIRelease:MethodsandConsiderations,”inFAccT:
Proceedingsofthe2023ACMConferenceonFairness,Accountability,andTransparency(NewYork:
AssociationforComputingMachinery,2023),
/10.1145/3593013.3593981;
Yoshua
Bengioetal.,“ManagingExtremeAIRisksAmidRapidProgress,”Science384,no.6698(2024):842–
845,
/doi/10.1126/science.adn0117;
YoshuaBengioetal.,“PauseGiantAI
Experiments:AnOpenLetter,”FutureofLifeInstitute,March22,2023,
/open-
letter/pause-giant-ai-experiments/.
4JoshA.GoldsteinandGirishSastry,“ThePPOuFramework:AStructuredApproachforAssessingtheLikelihoodofMaliciousUseofAdvancedAISystems,”ProceedingsoftheSeventhAAAI/ACM
ConferenceonAI,Ethics,andSociety7,no.1(2024):503–518,
/10.1609/aies.v7i1.31653.
5“PotentialBioterrorismAgents,”DepartmentofMolecularVirologyandMicrobiology,BaylorCollege
ofMedicine,accessedNovember22,2024,
/departments/molecular-virology-and-
microbiology/emerging-infections-and-biodefense/potential-bioterrorism-agents.
6“IssueBrief:WhatIsRedTeaming?”(FrontierModelForum,October27,2023),
/updates/red-teaming/.
7ChengrunYangetal.,“LargeLanguageModelsasOptimizers,”12thInternationalConferenceonLearningRepresentations(ICLR2024),
/pdf?id=Bb4VGOWELI.
8MaryPhuongetal.,“EvaluatingFrontierModelsforDangerousCapabilities,”arXivpreprint
arXiv:2403.13793
(2024),
/abs/2403.13793.
9“OpenAIRedTeamingNetwork,”OpenAI,September19,2023,
/index/red-teaming-
network/.
10AlexBeuteletal.,“DiverseandEffectiveRedTeamingwithAuto-generatedRewardsandMulti-stepReinforcementLearning,”arXivpreprint
arXiv:2412.18693
(2024),
/abs/2412.18693.
11“BrowseState-of-the-Art,”PaperswithCode,accessedNovember22,2024,
/sota.
CenterforSecurityandEmergingTechnology|13
12See,forinstance,ManishBhattetal.,“CyberSecEval2:AWide-RangingCybersecurityEvaluationSuiteforLargeLanguageModels,”arXivpreprint
arXiv:2404.13161
(2024),
/abs/2404.13161.
13AndyK.Zhangetal.,“LanguageModelDevelopersShouldReportTrain-TestOverlap,”arXivpreprint
arXiv:2410.08385
(2024),
/abs/2410.08385.
14ThomasH.Costello,G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双向控制机械铲企业县域市场拓展与下沉战略研究报告
- 轻量化零部件企业ESG实践与创新战略研究报告
- 皮革穿孔机企业县域市场拓展与下沉战略研究报告
- 胶粘剂纳米材料企业ESG实践与创新战略研究报告
- 耐水弹性泡沫石棉企业数字化转型与智慧升级战略研究报告
- 电美容仪企业ESG实践与创新战略研究报告
- 2025-2030农业保险行业市场发展分析及发展前景与投资机会研究报告
- 2025-2030高原特色农业行业市场发展分析及前景趋势与投融资战略研究报告
- 2025-2030集成电路制造行业市场发展分析及前景趋势与投资研究报告
- 2025-2030铁路道岔产业市场发展分析及发展趋势与投资前景研究报告
- 流行病学 第十三章伤害流行病学
- 管理核心五任务原版
- GB/T 30727-2014固体生物质燃料发热量测定方法
- GB/T 28731-2012固体生物质燃料工业分析方法
- 年度店长销售工作总结5篇
- 中小学生学习心理问题与疏导课件
- 自然地理学-第五章-地貌精课件
- 《骨折概论》课件
- 暨南大学-萧惠琳-毕业论文答辩PPT模板
- 工程竣工结算审计申请书
- CNC作业指导书及操作规范
评论
0/150
提交评论