




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1引言在经济全球化的背景下,我国制造业上市公司的规模不断扩大,与此同时,企业面临许多不确定性的微观或宏观因素,企业在财务管理上的挑战随之增加[1]。在我国对制造企业的财务管理研究中,大部分把企业的状况分为两类,即把ST企业定义为存在财务管理问题的样本,非ST的企业定义为经营正常的样本。但是,这种二分类的处理存在两方面的问题。第一,忽略了企业的其他状况,企业的状况除了经营正常和出现财务问题,还存在进入退市整理期和终止上市等情况,这些状况还可能发生变动,即企业的状况存在着多种变动情况;第二,在实际数据中,由正常经营到ST、由ST到终止上市、由ST转为正常经营等这些样本往往存在不平衡的问题,有的变动类型的样本数量会远大于其他样本,而传统的机器学习模型在面对不平衡数据时性能表现不佳[2]。综上,制造型企业的财务管理问题实际上是一个多分类不均衡的问题,本文用支持向量机(SupportVectorMachine,SVM)与哈夫曼树(HuffmanTree,HT)结构结合,将支持向量机扩展为多分类支持向量机模型,并缓和不平衡问题,在此基础上,利用算术优化算法(ArithmeticOptimizationAlgorithm,AOA)来寻找模型的全局参数,根据模型结果,对制造型企业的财务管理提供相关建议,将本文模型称为AOA-HT-SVM。2相关理论2.1制造型企业财务管理面临的问题2.1.1内部管理问题管理制度因素,不完善财务控制制度、风险管理制度和授权审批制度可能导致企业运行出现异常;生产决策因素,管理者需要对企业的内外部的生产或采购进行评估,制定适时恰当的决策来管理好企业财务;融资因素,制造企业通常需要融资并投入生产装置和原材料中,然而,市场波动、利率不确定或融资渠道受阻可能影响企业的融资成本[3]。2.1.2外部管理问题自然不可抗力因素,当面临自然灾害时,如地震、洪水、海啸,可能损坏厂房、在制品和成品,造成企业的财产损失;社会因素,企业在特定的文化、社会环境下生产运营,提供的产品或服务应与相应的社会环境适配;政策因素,税收政策、进出口政策、环境法规政策等会导致企业财务波动,例如,贸易政策的改变会使制造企业面临进出口受阻。2.2制造型企业财务管理的作用①控制成本。对于制造型企业,在劳动力成本不断增加、工厂等生产基础设施有限的情况下,通过财务管理,可以帮助企业识别一些低价值、非核心的制造活动,这能够优化生产,降低运营成本。②合理分配资金。制造业通常需要购买生产设备与工具,有效的财务管理确保企业将资金正确投入日常经营所需的活动中,避免造成资金占用与浪费。③优化供应链。供应链对制造企业至关重要,财务管理可以对供应链中的各项过程进行分析,例如,运输过程、库存处理过程、采购过程等,通过对这些过程进行分析,寻找可以优化的步骤,从而提高生产效率。2.3支持向量机支持向量机是一种基于统计学习理论的机器学习方法,其主要目标是找到一个最佳分离超平面,使数据空间中两类样本间隔最大化,同时使分类误差最小化[4]。当模型的数据集是非线性的或数据不能在当前维度空间中分隔时,支持向量机使用核函数将样本从低维空间映射到更高维的特征空间,常用的核函数包括多项式、径向基函数(RBF)和Sigmoid核函数。2.4算术优化算法受到加减乘除4种数学运算的启发,Abualigahetal.[5]在2021年提出了算术优化算法,该算法分为以下3个步骤:①初始化。随机生成候选解,每一轮迭代新产生的最优候选解被认为是最优解或近似最优解。②全局勘探。使用除法(D)和乘法(M)运算符的数学运算被用于可搜索空间的全局探索。③局部开发。使用减法(S)或加法(A)的数学运算会产生高密度结果。3财务管理模型设计3.1多分类不均衡支持向量机哈夫曼树是具有最短加权路径长度的最佳二叉树[6],基于哈夫曼树的数据分解策略采用分层的二叉树结构处理多分类数据集,每个结点由一个二元SVM进行决策,其构造过程如下:①具有m个类别的数据集,表示为:ni表示第i个类的数量。②根据ni的大小对C(m)进行升序排列,形成一个新的集合:③选择C(m')中的前两个最小元素作为左子节点、右子节点,构造一个新的二叉树节点。新节点的值是其左子节点和右子节点的和:④删除在C(m')中选择的两个元素,并将新的节点添加到C(m'):⑤重复步骤②、③和④,直到集合C(m')只剩下一个节点元素,HT-SVM构建完成。根据上述构建过程,每个二元SVM处理的两个类的数量会尽可能地接近,即在没对样本数量重采样或改动算法的情况下,直接改善了数据不平衡的问题。3.2模型的参数优化由于SVM对惩罚参数和核函数的变化很敏感,需要有合适的方法对这些参数寻优[7]。本文使用算法优化算法(AOA)来寻找模型参数,过程如下:①种群初始化:AOA随机生成种群,每个个体编码的内容即需要优化的参数,包括惩罚参数、核函数的类型(线性、径向基函数和多项式),以及核函数的参数。②设置适应度函数:将训练集和测试集比例设置为0.75∶0.25。在对训练集中的样本进行5次5折交叉验证之后,根据类的平均准确率来设计适应度函数。③适应度评估:根据适应度函数对每个个体的适应度进行评估,排序并保存具有最优解的个体。④迭代优化:根据AOA更新规则执行解更新。⑤获取最优参数和模型测试:在迭代完成后得到最优参数,使用最优参数训练并在测试集样本上进行测试。4实证分析4.1数据获取与预处理4.1.1数据获取本文从CSMAR数据库选取2013-2022年间沪深A股市场中制造业上市公司数据,数据为存在财务管理问题的企业样本,详细情况如表1所示。表1数据类型分布以上的企业状况代表字母及变动类型划分均来自国泰安数据库,具体含义为:A为正常上市,B为ST,D为*ST,T为退市整理期,X为终止上市。AB为企业的由正常上市转变为ST,AD为正常上市转变为*ST,以此类推,DT为*ST转变为退市整理期。为了样本类型的全面性,进一步选取500个经营正常的企业样本,即AA样本,总计样本1323个。本文使用T-2的数据来构建模型,进而对企业T年的变动状况进行分析。选择的指标汇总如表2所示,分别从7种指标类型中选取了28个指标。表2指标选取汇总4.1.2数据预处理在初步选择的指标中,有的指标可能对企业的状况没有显著影响。因此,有必要删除对企业状况类别无明显影响的变量,降低此类变量对模型能力的干扰。利用K-S检验对各个指标进行正态性检验,当指标服从正态分布时,用T检验来判断样本是否存在显著差异;当指标不服从正态分布时,用K-W检验进行判断。从K-S检验结果来看,所有指标均拒绝了原假设,说明均不服从正态分布。因此,采用K-W检验非参数检验,根据K-W的检验结果,固定资产比率、第一大股东持股比例、股权集中指标4(%)3个指标保留了原假设,说明在各类别中没有显著差异。将其余的拒绝原假设的指标作为最终选择的指标。4.2模型测试与结果为了探究哪一类指标对企业财务状况的效果影响更大,通过剔除该类指标构建新的数据集,将模型效果与保留所有指标的模型效果进行对比,查看该类指标的影响。将剔除发展能力类指标的数据集定义为D1,剔除经营能力为D2,剔除偿债能力为D3,剔除每股指标为D4,剔除盈利能力为D5,剔除比率结构为D6,剔除补充的指标为D7,指标全部保留为D。表3展示了AOA-HT-SVM在各个数据和类别上的准确率以及平均准确率。表3AOA-HT-SVM在各个数据上的结果根据表3,从不同数据集的结果来看,D1、D2、D3对企业状况的影响最大。当剔除发展能力、经营能力或偿债能力这3类指标时,平均准确率分别为0.6927,0.6798,0.6758,当保留所有指标时,为0.7906,模型效果明显提升。说明对于制造型企业,要维持企业在健康稳定状态,应关注其发展能力、经营能力和偿债能力。4.3对制造型企业的管理建议①稳步提升企业的发展能力制造企业可以通过了解不同市场的需求,推动产品多样化和技术创新,提供符合多个市场需求的产品,以此为企业带来更多的收入。②优化企业的经营能力制造企业可以通过产品的整合,降低生产流程的成本和管理的复杂度,推动产品模块化生产,从而提高产品的生产效率和交付水平。③重视企业的偿债能力企业在平时应该加强存货管理,避免过高的库存造成资金占用,确保企业有一定的资金用于偿债,同时也应积极主动偿还债务。5研究结论与展望5.1研究结论①针对多分类不均衡的制造企业财务管理问题,本文以支持向量机为分类器,首先构建基于哈夫曼树的支持向量机模型,将多分类问题转化为一系列相对平衡的二分类问题,使其能有效地处理企业数据,并使用算术优化算法进行参数寻优。②使用本文提出的AOA-HT
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省乐山市重点中学2025年高考化学三模试卷含解析
- 湖南名师联盟2025年高三第二次模拟考试化学试卷含解析
- 幼儿教育实训大厅
- 关注安全珍惜生命
- 河北省张家口市尚义县第一中学2025届高三考前热身化学试卷含解析
- 学前教育专业绘本故事的重要性与应用
- 福建省泉州市20023年第29届WMO竞赛四年级数学下学期竞赛试卷
- 2024-2025学年河南省创新发展联盟3月天一大联考高一下学期阶段性测试(三)数学试卷(含答案)
- 2025届安徽省黄山市屯溪第二中学高三3月份第一次模拟考试化学试卷含解析
- 成人肺部感染的监测与护理
- 江西省南昌中学2024-2025学年高一下学期3月月考地理试题(原卷版+解析版)
- 6《请帮我一下》(第1课时)课件-2024-2025学年道德与法治一年级下册课件(统编版2024)
- 落实“215”专项行动:xx小学体育“加速度”
- 2025年湖北省八市高三(3月)联考政治试卷(含答案详解)
- 国际热点政治课件
- Unit 5 Here and now Section B project 教学设计 2024-2025学年人教版(2024)七年级英语下册
- 老年人60岁以上C1驾考三力测试题及答案
- 2020-2021学年江苏省南京外国语河西初级中学等三校七年级(下)期中数学试卷
- 2024年下半年广西现代物流集团社会招聘校园招聘笔试参考题库附带答案详解
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- 10万吨橡塑一体化能源再生项目环评报告表
评论
0/150
提交评论