




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科生毕业设计(论文)题目:常村煤矿2.4Mt/a新井设计专题:常村煤矿矿震时空分布规律分析研究摘要本毕业设计分三部分:一般部分针对义马常村矿的地质条件进行了井型为2.4Mt/a的新井设计。常村矿井位于河南省义马市境内,井田走向长约5.0km,倾向长约3.5km,面积约14km2。主采煤层为2-1、2-3煤层,平均倾角10°,2-1平均厚度3.05m,2-3平均厚度10.63m,合并区平均厚12.48m。矿井正常涌水量为145m3/h,最大涌水量为375m3/h;矿井相对瓦斯涌出量为1.31m3/t,属低瓦斯矿井。井田工业储量为246.1Mt,可采储量175.5Mt,设计年产量为2.4Mt/a,矿井服务年限为56.24a。根据井田地质条件,设计采用立井两水平(暗斜井延深)开拓方式,一水平布置在+100m,二水平布置在-100m。井田采用带区式跟采区式布置方式,共划分为4个带区,1个采区,轨道大巷、胶带机大巷和回风大巷皆为岩石大巷,布置在2-3煤层底板岩层中。考虑到本矿井为低瓦斯矿井,且矿井面积较小,矿井通风方式采用中央并列式通风。大巷采用胶带输送机运煤,辅助运输采用直流架线式电机车牵引固定箱式矿车。主井采用两套两对12t箕斗提煤,副井采用一对带双层四车(1.5t)罐笼,一个平衡锤的双层两车(5t)运料和升降人员。针对东一带区采用了带区准备方式,共划分12个分带工作面,并进行了运煤、通风、运料、排矸、供电系统设计。针对21105工作面进行了采煤工艺设计。该工作面煤层平均厚度为12.48m,平均倾角10°,直接顶为灰黑色泥岩,伪顶为薄层状细砂岩。工作面采用长壁综合机械化放顶煤采煤法。采用双滚筒采煤机割煤,往返一次割两刀。采用“三八制”工作制度,截深0.8m,每天4个循环,循环进尺3.2m,月推进度96m。专题部分题目为《常村煤矿矿震时空分布规律分析》,以常村矿2115掘进工作面与2120综采工作面为背景,进行了采掘过程中矿震规律的研究,通过观测数据收集与处理,得出了该矿矿震在时间与空间的分布规律。这为矿井采掘工作面的安全生产提供了技术支撑。翻译部分题目为《ApreliminarystudyofcoalminingdrainageandenvironmentalhealthintheSantaCatarinaregion,Brazil》,主要介绍了巴西圣卡塔琳娜地区煤炭开采矿井排水对水中主要和微量元素的影响以及对当地环境健康的影响。关键词:常村矿井;立井两水平;带区布置;综合机械化放顶煤;中央并列式;矿震分析;环境影响
ABSTRACTThisgraduationdesignisdividedintothreeparts.Thegeneraldesignisabouta2.40Mt/anewundergroundminedesignofChangcuncoalmine.ChangcuncoalmineislocatedinYima,Henanprovince.It’sabout5.0kmonthestrikeand3.5kmonthedip,withthe14.0km2totalhorizontalarea.Theminablecoalseamis2-1withanaveragethicknessof3.05m,2-3averagethicknessof10.63m,andtheAnnexationAreaaveragethicknessof12.48mwithanaveragedipof10°.Thenormalmineinflowis145m3/handthemaximummineinflowis375m3/h.Theminegasemissionrateis1.31m3/twhichcanberecognizedaslowgasmine.Theprovedreservesofthiscoalmineare246.1Mtandtheminablereservesare175.5Mt,withaminelifeof56.24a.Basedonthegeologicalconditionofthemine,Thedesignusesatwolevelverticalshaft(darkdeepinclinedshaftextension)toopenupthewaytoahorizontallayoutto+100m,thesecondlevelisarrangedinthe-100m.,andfullCoalfieldpreparation,whichdividedintofourbands,aminingarea,andtrackroadway,beltconveyorroadwayandreturnairwayareallrockroadways,arrangedinthefloorrockof2-3coalseam.Takingintoaccountofthelowgasemission,andminesmaller,mineventilationmodewithacentralparallelventilation.Mainroadwaymakesuseofbeltconveyortotransportcoalresource,andDCwiringmotorvehiclestobeassistanttransport.Themainshaftusesdouble12tskipstoliftcoalwithabalancehammerandtheauxiliaryshaftusesatwinsnarrow1.5tfour-cardouble-deckcageandawide1.5tfour-cardouble-deckcagetoliftmaterialandpersonneltransportation.ThedesignappliesstrippreparationagainstthefirstbandofEastOnewhichdividedinto12stirpstotally,andconductedcoalconveyance,ventilation,gangueconveyanceandelectricitydesigning.Thedesignconductedcoalminingtechnologydesignagainstthe21105face.Thecoalseamaveragethicknessofthisworkingfaceis12.48mandtheaveragedipis10°,theimmediateroofismudstoneandthemainroofissandstone.TheworkingfaceappliesfullymechanizedlongwallIntegratedmechanizedtopcoalcavingmethod,andusesdoubledrumshearercuttingcoalwhichcutstwiceeachworkingcycle."Three-Eight"workingsystemhasbeenusedinthisdesignandthedepth-webis0.8mwithfourworkingcyclesperday,andtheadvanceofaworkingcycleis3.2mandtheadvanceis96mpermonth.Themonographicstudyentitled"CaseStudyandResearchofChangcuncoalmineearthquakeinspatialandtemporaldistribution",thisstudytook2115HeadingFacewith2120mechanizedminingfaceofChangcuncoalmineasasbackground,conductedtheMineearthquakeintimeandspace,whichhadprovidedtechnicalsupportforthesafeproductionofminesminingface.Thetitleofthetranslatedacademicpaperis"ApreliminarystudyofcoalminingdrainageandenvironmentalhealthintheSantaCatarinaregion,Brazil".IntroducestheSantaCatarinaregionofBrazilcoalminingintheminedrainagewatermainandtraceelements,aswellastheimpactonthelocalenvironmentalhealth.Keywords:Changcuncoalmine;doubleverticalshaft;bandmode;Integratedmechanizedtopcoalcaving;centralparallelventilation;Analysisofmineearthquake;Environmentalimpact.中国矿业大学2012届本科生毕业设计(论文)目录一般部分TOC\h\z\t"标题1,1,标题2,2,标题,3"1矿井概况与地质特征 页ApreliminarystudyofcoalminingdrainageandenvironmentalhealthintheSantaCatarinaregion,BrazilLuisF.O.Silva•MarcusWollenschlager•MarcosL.S.OliveiraReceived:22September2009Accepted:3May2010Publishedonline:18May2010SpringerScience+BusinessMediaB.V.2010Abstract:Theconcentrationsandloadingsofmajorandtraceelementsincoalminedrainage(CMD)from49abandonedmineslocatedinthecoalfieldsoftheBrazilianstateofSantaCatarinaweredetermined.TheCMDsitestypicallydisplayedawidespatialandtemporalvariabilityinphysicalandgeochemicalconditions.TheresultsofourCMDanalysesinSantaCatarinaStatewereusedtoillustratethatthegeochemicalprocessesintherockpilescanbededucedfrommultipledatasets.TheobservedrelationshipbetweenthepHandconstituentconcentrationswereattributedto(1)dilutionofacidicwaterbynearneutraloralkalinegroundwaterand(2)solubilitycontrolofAl,Fe,Mn,BaandSrbyhydroxide,sulfate,and/orcarbonateminerals.ThepreliminaryresultsoftheCMDanalysesandenvironmentalhealthintheSantaCatarinaregion,Brazil,arediscussed.Keywords:BraziliancoalminingCoalminedrainageDrainagemanagementEnvironmentalimpactsIntroductionAcoalminingprojectcanbeseentobeavaluableresourceintermsofitscontributiontothelocalandnationaleconomyanditsassociatedimpactonsociety(Sekineetal.2008).However,thecostassociatedwithreclamation,mitigation,andmonitoringofimproperlycontrolledandabandonedminescanbestaggering.Inaddition,oneofthemajorenvironmentalconcernsrelatedtocoalminingisthecontaminationofsurfaceandgroundwatersasaresultofsurfacedisposalofwasterock.Thesewastematerialstypicallycontainvariableamountsofsulfideminerals.Afterdisposal,exposuretoatmosphericoxygenandwaterresultsinsulfideoxidationandtheformationofminedrainagewithvariablepH,SO42-,andheavymetalcontent.Whencoalismined,pyriteisexposedtooxygenandwater,settingoffaseriesofreactionsthatcanresultinloweredpH(unlesstherearesufficientcarbonatestoneutralizeacidsproducedbyoxidationandhydrolysis)andthereleaseofhighconcentrationsofmetals,suchasiron(Fe),aluminum(Al),andmanganese(Mn).Potentiallytoxictraceelements,suchasarsenic(As),mercury(Hg),lead(Pb),andselenium(Se),mayalsobereleased.Inadditiontocausingpoorwaterquality,minedrainagecanaffectthesubstrateofastream.Ferrousiron(Fe2?)isoxidizedtoferriciron(Fe3?)toformaprecipitateonthesubstrate(commonlyreferredtoas‘‘yellowboy’’)inthepresenceofwaterwhenthepHisgreaterthanabout3.5(RoseandCravotta1998).InmanyminedrainagestreamswitharelativelyhighpH,precipitatedironandaluminummaycoatthestreamsubstrateandcauseanunstablehabitatformacroinvertebrates(Schmidtetal.2002;Simmonsetal.2005).ThepHofasolutionisanimportantmeasureforevaluatingaquatictoxicityandcorrosiveness(Cravotta2008).Theseverityoftoxicity,orcorrosion,tendstobegreaterunderlow-pHorhigh-pHconditionsthanatnear-neutralpHbecausethesolubilityofmanymetalscanbedescribedasamphoteric,withagreatertendencytodissolveascationsatlowpHoranionicspeciesathighpH(Langmuir1997).Forexample,AlhydroxideandaluminosilicatemineralshavetheirminimumsolubilityatpH6–7(NordstromandBall1986;BighamandNordstrom2000),andbriefexposuretorelativelylowconcentrationsofdissolvedAlcanbetoxictofishandotheraquaticorganisms(BakerandSchofield1982).Anions,includingSO42-,HCO3-and,lesscommonly,Cl-,canbeelevatedabovebackgroundconcentrationsincoalminedrainage(CMD)(Cravotta2008),andpolyvalentcationssuchasAl3?andFe3?tendtoassociatewithsuchionsofoppositecharge(Nordstrom2004).Ion-pairformation,oraqueouscomplexationreactions,betweendissolvedcationsandanionscanincreasethetotalconcentrationofmetalsinasolutionatequilibriumwithmineralsandcanaffectthebioavailabilityandtoxicityofmetalionsinaquaticecosystems(e.g.,Sparks2005).Eventually,thesolutionscanbecomesaturated,orreachequilibrium,dependingonthevarioussulfate,carbonate,orhydroxidemineralsthatestablishupperlimitsforthedissolvedmetalconcentrations.Inthisstudy,weanalyzed49samplesofabandonedCMDatminedumpsinSantaCatarinaState,Brazil,identifyingthegeochemicalprocesseswhichgiverisetoitsacidiccharacterandevaluatingtheeffectsoftheselectivespoilmanagementonitscharacteristics.Thevariationinthewaterchemistryisalsodiscussedwithintheframeworkoftheresults.ThispreliminarystudyoftheexistingCMDinSantaCatarinaStaterelatestomineralsexposedduringcoalmining(coalcleaningresidues,CCR)andtherelevantgeochemicalprocessesthatexplaintheoriginofthemainelementspresent.CoalzonesofSantaCatarinaStateTheriversofSantaCatarinaState(Tubara˜o,Urussanga,andArarangua´)receivetheeffluentsgeneratedatthecoalmines.Contaminationofthewaterresourcesisduetocoaldrainagefrom134stripminesitescoveringatotalareaof2,964ha,115wastedepositareasonatotalof2,734hectares,77siteson58hectareswithacidicpools,andhundredsofundergroundmines(ABMC2008).However,theproductionandcirculationofacidicstreamsindumpareascreateaproblemforlandreclamationasitimpedestheestablishmentofvegetationandevencausesthedisappearanceofalreadywellestablishedvegetation(SIECESC2008).Thecontactbetweenspoilsofdifferentpermeabilitiesallowsthefrequentoutflowofsub-superficialwaterfromthebanksthatareinterconnectedwiththegeneralcirculation.Soilrestorationworkincludestheuseofcorrectors,suchaslimeorashesfromlignitecombustion,inorganicandorganicfertilizersand,onsomeoccasions,thespreadingofalayeroftopsoil.Thedifferenttypesofspoilsdumpedandtheproceduresusedhavegivenrisetoawidevarietyofphysicochemicalconditionsatthedumpsurfaces.Fig.1LocationoftheSantaCatarinacoalbasinTheenvironmentalproblemsaretheresultof120yearsofminingactivityandotherpollutionsources.In1980,theSantaCatarinaCoalRegion(Fig.1)wasdesignateda‘‘CriticalNationalAreaforPollutionControlandEnvironmentalConservation’’.Duetothisgravesituation,theFederalAttorneyGeneralfiledsuitin1993againstthefederalandstategovernmentsandcoalcompanies,seekingenvironmentalrecoveryoftheareasaffectedbycoalmininginadditiontoterminationoftheenvironmentaldegradationbytheactivemines.In2000,afederaljudgeinCriciu´ma,SantaCatarina,orderedthegovernment-runcompaniestoestablisharecoveryprojectwithin6monthsthatwouldbeimplementedover3yearsandencompassthedamagecausedbycoalminingactivitiesintheentirecoalregioninthesouthernpartofthestate(SIECESC2008).MethodsandanalyticalproceduresWaterInthisstudy,wecharacterizedthephysico-chemicalpropertiesofwasteeffluentatselectedacid-producingminesites.Thefieldworkwasperformedduringseveralweatherseasonsin2005(January,March,May,July,September,November)and2006(February,April,October,December)andincludedacomprehensiveanddetailedexplorationofthestudyarea.Forty-ninewaterqualitycontrolsamples,thelocationsofwhichweredeterminedbyGPS,werecollectedfromthedifferentrestorationareas,categorizedasfourcoalminegroups(Table2):LauroMuller,Criciu´ma,TrevisoandUrussangacities.Theseexactlocationswerechosenforthestudybecause(1)thelocationshowedacomparativelylowerresistancethansurroundingareas(i.e.,anindicationofCMDsourcematerial);(2)nearbywetlandsshowedevidenceofacidminedrainage(AMD);(3)thelocationwasreadilyaccessibleandcontainedexistingmonitoringwells;(4)nearbyseepscouldbeusedtoidentifythehydraulicgradientformonitoringpurposes.Watersampleswerecollectedin1-LTeflonbottlesthatwasthensplitintorinsedpolythenebottles;preservationwasdonebystandardmethods(Clescerialetal.1998).WaterqualityVarioustraceelements,suchasAs,Co,Cu,Pb,Ni,Se,uranium(U),andZn,areconcentratedincoal(Table1)andareharmfultothehealthofaquaticandTable1AveragevaluesforthetraceelementsintheSantaCatarinaCCR(ppm)Table1AveragevaluesforthetraceelementsintheSantaCatarinaCCR(ppm)ElementSantaCatarina(CCR)aBraziliancoalbWorldcoalcAs6.0-43.724.40.5-80Ba300N/A0.5-150Be2.2--5Co1.2-13.16.00.5-30CuCrHgMoNiPbSbSeSrSnThUVZn14.3-39.739-570.192.7-6.64-2326.8-139.80.4-2.14.3-9.43.8-5.710.3-616.113.8-22.84.9-1676.8-105.516.5-297.416.015.00.173.314.011.01.22.8N/AN/AN/A2.122.053.00.1-500.5-600.0120.1-100.1-502-800.05-100.2-100.1-50.5-2500.1-50.1-52-1005-300EnvironmentalhealthanddynamicsofsurfaceswatersThetoxicityinthewastewasmainlyduetothepresenceofdifferentmetals,namely,Pd,cadmium(Cd),As,Cr,amongothers,withAlalsobeingtoxictofish.Theresiduereleasedduringtheprocesscouldbeeitherrecycledforfurtherprocessingorsentforsafedisposalwithoutaffectinghumanhealth.Atsurfacecoalmines,wheretheoverburdenchemicalprocessesaredominatedbyeithercalcareousorhighlypyriticstrata,thepredictionofpostreclamationwaterqualityisrelativelystraightforward.However,atsiteswhereneitherofthetwoabovementionedprocessesclearlypredominates,predictingpost-reclamationwaterqualitycanbecomplex.Tenyearsago,researchersandscientists(Silva2006;SIECESC2008)foundthatatthesemoredifficult-topredictsites,overburdenanalysisproceduresgenerallyusedtopredictpost-reclamationwaterqualityatsurfacecoalmineswerenomorereliablethanflippingacoin.Sincethistime,agreatdealofefforthasgoneintoimprovingtheprocedures(ABMC2008).Itshouldbenotedthatthisstudyreportsonlyonthosecomponentsrelevanttothepredictionofwaterqualityatsurfacemineswherecoalisbeingmined.Althoughthegeneralapproachissimilar,theissuesandinterpretationofresultscanbequitedifferentforhardrockoperationsandundergroundcoalmining.Statisticalanalysisofsurfacewaterqualitydataincoalminingareasfromunmined,abandonedmine,andreclaimedsitesinSantaCatarinashowedthatthereweresignificantdifferencesinstreamflowpH,specificconductance,alkalinity,andconcentrationsofmetalsbetweenabandonedmine,andunminedsites(SIECESC2008).StreamsatreclaimedsiteshadaveragepHvaluesandAlconcentrationssimilartothoseinunminedsites.Theaveragespecificconductanceandsulfateconcentrationsofstreamwaterwereaboutthesameatreclaimedandabandoned-minesites,buttheyweresignificantlyloweratunminedsites;specificconductanceandsulfateconcentrationactuallyprovedtobereliableindicatorsofbasinsthathadbeendisturbedbymining(OliveiraandSilva2006).ConclusionsRegionalwaterqualitydatawerecollectedin2005–2006at49CMDsitesinSantaCatarinaState,Brazil.ThevariabilityintheCMDhydro-geochemistryenablesdifferentconditionsofpH,Eh,DO,oxidationrateofFe(II),andmetalcontentstobedeterminedamongthestudiedeffluents.Thesedifferentconditionshavestrongimplicationsastheyintroduceadditionaldifficultiesintothedesignofcorrectivemeasuresattheminesites.Ourresultsdemonstratethatselectivemanagementofspoilsitesistherestorationpracticethatoffersthebestprotectionagainstcontaminationofsurfaceandsubsurfacewaters,providingasuitableproceduretoapplyinthefutureconstructionofdumpsurfaces.Improvementinthequalityofdrainagesystemsusingthispracticecansignificantlyreducethecostoftreatmentinthepurificationplantpriortoeffluentsbeingdischargedtothereceivingcatchmentzone.Futureworkshouldinvestigatetherelationshipsbetweenthestabilityofsurfaceprecipitates.AcknowledgmentsThisworkwasconductedbyFEHIDROandEnvironmentalFoundationofSantaCatarinaState(FATMA).WearegratefultoMr.FransWaanders,R.B.Finkelman,CidneiGalvani,Rui,FernandoA.R.Guedes,andMarcioPinkandforinvaluablecollaborationinthestructuralwork.BASF,S.A.(Brazilian)conductedmostofthechemicalanalyses(inspecialmanagement,BrunoSina).Theauthorsacknowledgelogisticalsupportfromthecoalminingcompanies(accesstosamples).References[1]ABMC.(2008).Availableat:.br.Accessed12May2008.[2]Baker,R.,&Schofield,C.L.(1982).Aluminumtoxicitytofishinacidicwaters.Water,Air,andSoilpollution,18,289–309.[3]Bigham,J.M.,&Nordstrom,D.K.(2000).Ironandaluminumhydroxysulfatemineralsfromacidsulfatewaters.ReviewsinMineralogyandGeochemistry,40,351–403.[4]Borda,M.,Elsetinow,A.,Schoonen,M.,&Strongin,D.(2001).Pyrite-inducedhydrogenperoxideformationasadrivingforceintheevolutionofphotosyntheticorganismsonanearlyEarth.Astrobiology,1,283–288.[5]Carlson,L.,Bigham,J.M.,Schwertmann,U.,Kyek,A.,&Wagner,F.(2002).ScavengingofAsfromacidminedrainagebyschwertmanniteandferrihydrite:Acomparisonwithsyntheticanalogues.EnvironmentalScienceandTechnology,36,1712–1719.[6]Clescerial,L.S.,Greenberg,A.E.,&Eatan,A.D.(1998).Standardmethodsforexaminationofwaterandwastewater(pp.3.37–3.38),20thedn.Washington,DC:APHA,AWWA.[7]Cohn,C.A.,Borda,M.J.,&Schoonen,M.A.(2004).RNAdecompositionbypyrite-inducedradicalsandpossibleroleoflipidsduringtheemergenceoflife.EarthandPlanetaryScienceLetters,225,271–278.[8]Cravotta,A.C.(2008).Dissolvedmetalsandassociatedconstituentsinabandonedcoal-minedischarges,Pennsylvania,USA.Part1:Constituentquantitiesandcorrelations.AppliedGeochemistry,23,166–202.[9]Earle,J.,&Callaghan,T.(1998).Effectsofminedrainageonaquaticlife,wateruses,andmanmadestructures.InK.B.C.Brady,&M.W.J.Smith(Eds.),CoalminedrainagepredictionandpollutionpreventioninPennsylvania,5600-BK-DEP2256,4.1–4.10.[10]Harrisburg,PA:PennsylvaniaDepartmentofEnvironmentalProtection.Herr,C.,&Gray,N.F.(1995).Samplingriverinesedimentsimpactedbyacidminedrainage:Problemsandsolutions.EnvironmentalGeology,29,37–45.[11]Kalkreuth,W.,Holz,M.,Kern,M.,Machado,G.,Mexias,A.,Silva,M.B.,etal.(2006).PetrologyandchemistryofPermiancoalsfromtheParana´Basin:1.SantaTerezinha,Lea˜o-Butia´andCandiotacoalfields,RioGrandedoSul,Brazil.InternationalJournalofCoalGeology,68,79–116.[12]Pires,M.,&Querol,X.(2004).CharacterizationofCandiota(SouthBrazil)coalandcombustionby-product.InternationalJournalofCoalGeology,60,57–72.[13]Querol,X.,Izquierdo,M.,Monfort,E.,Alvarez,E.,Font,O.,Moreno,T.,etal.(2008).EnvironmentalcharacterizationofburntcoalganguebanksatYangquan,ShanxiProvince,China.InternationalJournalofCoalGeology,75,93–104.[14]Silva,L.F.O.,Oliveira,M.L.S.,daBoit,K.M.,&Finkelman,R.B.(2009b).CharacterizationofSantaCatarina(Brazil)coalwithrespecttoHumanHealthandEnvironmentalConcerns.EnvironmentalGeochemistryandHealth,31,475–485.[15]Smith,K.S.,&Huyck,H.L.O.(1999).Anoverviewoftheabundance,relativemobility,bioavailability,andhumantoxicityofmetals.ReviewsinEconomicGeology,6A,29–70.
巴西圣卡塔琳娜地区煤炭开采污水排放和环境健康的初步研究路易斯FO席尔瓦,马库斯伍仑斯拉格,马科斯LS欧雷维拉收到日期:2009年9月22日采纳日期:2010年5月3日在线出版日期:2010年5月18日摘要:本文对坐落在巴西圣卡塔琳娜地区的49座废弃矿井排弃废水中的主要和微量元素进行了测定。这些进行CMD测试的地点在物理和地球化学方面存在很大时间和空间上的差异性。我们在圣卡塔琳娜地区进行的CMD测试分析可以说明岩层中的物理化学变化可以通过一套模型数据的确定来推导演绎出来。已经观测到的PH值和浓度之间的关系如下(1)酸性水被附近的中性或碱性水所稀释(2)铝、铁、锰、钡和锶元素与含氢、硫酸盐和碳酸盐的矿物质反应从而可溶于水。巴西圣卡塔琳娜地区CMD的分析和环境健康的评估在本篇文章作为主要讨论内容。关键词:巴西煤炭开采,矿井排水,排水措施,环境影响。正文由于一个煤矿工程可以为当地的经济发展做出贡献并且会对社会上相关行业产生好的影响,所以煤炭被看做是一种有价值的资源。然而采空区的充填以及对不当开采和废弃矿山监测的成本却令人咋舌。除此之外,煤炭开采带来的主要环境问题之一是因为地表塌陷和废弃矸石所造成的地表水和地下水污染。这些废弃物主要包含了大量的硫酸盐矿物。在塌陷之后挥发到大气层中或者溶于水中导致酸雨,形成多种PH值的含SO4-2和重金属的煤矿废水。当一个煤矿进行开采时,其中混杂的铁矿石与氧气和水接触,发生一系列的化学反应产生一定的酸性(除非有足够的碳酸盐和硫酸盐来中和由于接触空去和水所产生的酸根离子)并且释放高浓度的金属离子,比如说铁、铝和锰。一些具有潜在毒性的微量元素例如砷、汞、铅和锶也可能会释放出来。除了会导致水质量恶化,煤矿污水也会污染溪水或河流的水源。当ph值大于3.5时水中的+2价铁离子会被氧化成+3价铁离子,在水中形成一种沉淀物。在很多PH值相对较高的受煤矿污水污染的河流中,沉淀的铁和铝会覆盖在河底,造成大型无脊椎动物栖息地的不稳定和恶化。一个地方水体的PH值对于评估毒性和腐蚀性是非常重要的。在酸性或者碱性水体中上述毒性或腐蚀性的严重程度要比接近中性的水体中高的多,这是因为许多金属更容易在酸性和碱性环境中充分的溶解。例如,铝及其化合物在PH=6-7时在液体中的溶解度最小,但是和相对较低浓度的铝离子溶液短暂的接触就会对鱼类和其他水中的有机物造成毒性。阴离子包括SO4-2,HCO3-和少量常见的Cl-,这些离子的浓度都会在煤矿污水中升高。通过溶解在水中的金属和阴离子的反应生成物还会使金属离子的浓度增加直至与矿物质达到平衡,这也会影响水下生态系统中金属离子的生物利用和自我恢复能力。最终这种过程根据不同的硫酸根、碳酸根或者离子型态的金属元素所建立起的水体溶解上限达到一种平衡。在这项研究中,我们分析了圣卡塔琳娜地区49个废弃的CMD矿井污水样本,证明了这种化学变化使得其酸性加强,评估了有选择性的根据水体的酸碱性使之变质的影响。水中的化学反应也在结果中加以探讨。这项对于圣卡塔琳娜地区现存的CMD初步研究与在煤炭开采时暴露在空气或水中的矿物质有关,同时也与地球物理化学变化过程有关,这种变化可以解释现在这些主要物质元素的起源。圣卡塔琳娜地区煤田分布圣卡塔琳娜地区的河流汇集了由于煤炭开采产生的污水。这些水资源受到污染是由于在方圆2964公顷范围内存在的134个矿井的污水排放点以及在方圆2734公顷的范围内115个废弃物沉淀聚集地区,占地58公顷的77处酸性污水池和上百个井工开采的煤矿。然而在采空区上方的一些呈酸性的河流的流动也会造成一些关于地表恢复的问题,因为这些酸性河流会阻碍地表植被的形成甚至会导致已经形成的植被的消失。不同渗透性的腐蚀性水体之间的接触会导致与正常水体相联系的表层河流水频繁的外流。地表土壤的恢复工作包括使用正确的措施,比如喷洒植物燃烧留下的灰烬,使用有机和无机肥料,在某些特殊情况下还可以重新铺盖一层表土。由于不同的污染物会排放出来,因此在污染物污染的地表,上述方法会产生不同的物理、生物化学变化。现在的环境问题是在过去120中的采矿活动和其他污染源共同导致的结果。在1980年,圣卡塔琳娜矿区被认为是一个“亟待需要控制污染保护环境的地区”。因为这样严峻的现实,在1993年联邦检察部门起诉各州的政府和煤炭企业以期达到恢复被煤炭开采污染的环境,并且终止被仍在进行的煤炭开采活动造成的环境恶化。2000年圣卡塔琳娜地区Criciu’ma的法官下令政府开办的企业要在六个月内开始一项环境恢复工程,这项工程为期不少于三年,工程的任务要围绕并解决在州南部地区所有的煤田造成的环境污染问题。表1.圣卡塔琳娜地地区煤田位置方法和分析步骤水资源在这项研究中,我们详细描述了在已选择的酸性污水产生地产生的酸性污水的物理和化学性质。现场的测试工作在2005年(1月,3月,5月,7月,9月,11月)和2006年(2月,4月,10月,12月)的不同季节与气候条件下进行,包含了对该地区广泛而细致的探索。49种水质样本是在不同的被GPS定位的恢复地区收集的,被分为4种矿井种类(表2):LauroMuller,Criciu´ma,TrevisoandUrussangacities。这些精确的位置被本研究所采用是因为:(1)这些地区比周边地区更倾向于不反对本研究(2)附近的湿地有证据表明被酸性矿井污水污染(3)这些地区交通方便且有现成的监测矿井(4)周围的渗透层可以用来验证监测地区的水力梯度变化。取出的水样被装在编号为1-L的聚四氟乙烯瓶中然后被装入漂洗过的聚乙烯瓶中,所有的保护措施都是按照标准方法完成的。水质多种不同的微量元素,例如砷,钴,铜,铅,铌,锶,铀和锌都会浓缩在煤中并且对水生生物健康造成危害。表1圣卡塔琳娜地区微量元素的平均值CCR(ppm)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度工伤事故赔偿及赔偿金计算标准协议
- 二零二五年度全国旅游合同集合:旅游大数据分析及应用合作协议
- 二零二五年度智能交通项目经理服务契约
- 二零二五年度割双眼皮手术术前术后医疗纠纷处理协议
- 2025年度耕地租赁与农业绿色防控技术合作合同
- 2025年度鱼塘承包及渔业人才培养合作协议
- 2025年度自驾游车辆安全责任免除协议书
- 2025年度服饰店铺委托经营合作协议
- 二零二五年度农产品销售中介服务协议
- 2025年度虚拟现实与增强现实股东合作协议书
- Moldflow模流分析基础教程 课件 第7章
- 四川省高等教育自学考试毕业生登记表【模板】
- 食品营养学(暨南大学)智慧树知到答案章节测试2023年
- 核和辐射事故现场卫生救援
- 学生心理危机识别与干预(家长教师版)
- 广西建设工程质量检测和建筑材料试验收费项目及标准指导性意见(新)2023.10.11
- 象征手法 (2)课件
- 八项规定学习课件
- 《过零丁洋》公开课件
- 黄精栽培技术PPT
- 08S305-小型潜水泵选用及安装图集
评论
0/150
提交评论