江苏省泰州市三中学教育联盟2024年中考冲刺卷数学试题含解析_第1页
江苏省泰州市三中学教育联盟2024年中考冲刺卷数学试题含解析_第2页
江苏省泰州市三中学教育联盟2024年中考冲刺卷数学试题含解析_第3页
江苏省泰州市三中学教育联盟2024年中考冲刺卷数学试题含解析_第4页
江苏省泰州市三中学教育联盟2024年中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泰州市三中学教育联盟2024年中考冲刺卷数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD的长为()A.4 B.5 C.8 D.102.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1053.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B.1 C. D.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有()A.2个 B.3个 C.4个 D.5个5.下列计算正确的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a36.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A.152元 B.156元 C.160元 D.190元7.下面的图形是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个8.如图是某几何体的三视图,下列判断正确的是()A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为29.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是()A.55° B.60° C.65° D.70°10.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50° B.20° C.60° D.70°二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:﹣22÷(﹣)=_____.12.计算:3﹣(﹣2)=____.13.一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了+1,则点A所表示的数是_____14.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)15.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.16.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.三、解答题(共8题,共72分)17.(8分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上(1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;(2)画出将△ABC向右平移6个单位后得到的△A2B2C2;(3)在(1)中,求在旋转过程中△ABC扫过的面积.18.(8分)先化简,再求值:,且x为满足﹣3<x<2的整数.19.(8分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.20.(8分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.

请根据所给信息,解答以下问题:

表中___;____请计算扇形统计图中B组对应扇形的圆心角的度数;

已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(10分)已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.23.(12分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)24.(1)计算:sin45°(2)解不等式组:

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.【详解】解:∵矩形ABCD的对角线AC,BD相交于点O,

∴∠BAD=90°,点O是线段BD的中点,

∵点M是AB的中点,

∴OM是△ABD的中位线,

∴AD=2OM=1.

∴在直角△ABD中,由勾股定理知:BD=.

故选:D.【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.2、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】55000是5位整数,小数点向左移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,所以,55000用科学记数法表示为5.5×104,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、A【解析】∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,∴从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.4、B【解析】

①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.【详解】①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.∴③④⑤正确.故选B.【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.5、D【解析】

根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.【详解】,A选项错误;(﹣a2)3=-a6,B错误;,C错误;.6a2×2a=12a3,D正确;故选:D.【点睛】本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.6、C【解析】【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.【详解】设进价为x元,依题意得240×0.8-x=20x℅解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题.解题关键点:找出相等关系.7、B【解析】

根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.【详解】解:第一个图形是轴对称图形,但不是中心对称图形;第二个图形是中心对称图形,但不是轴对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形即是轴对称图形,又是中心对称图形;∴既是轴对称图形,又是中心对称图形的有两个,故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.8、A【解析】试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,再根据左视图的高度得出圆柱体的高为2;故选A.考点:由三视图判断几何体.9、C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.10、D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】解:原式==1.故答案为1.12、2+2【解析】

根据平面向量的加法法则计算即可.【详解】3﹣(﹣2)=3﹣+2=2+2,故答案为:2+2,【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.13、﹣6或8【解析】试题解析:当往右移动时,此时点A表示的点为﹣6,当往左移动时,此时点A表示的点为8.14、【解析】抛物线的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1

时,y1>y2

.故答案为>15、4n﹣1.【解析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n﹣1)=4n﹣1个.16、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;

②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;

④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.【详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

∴△APD≌△AEB(SAS);

故此选项成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此选项成立;

②过B作BF⊥AE,交AE的延长线于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

∴BF=EF=

故此选项不正确;

④如图,连接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

又∵PB=

∴BE=

∵△APD≌△AEB,

∴PD=BE=

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此选项不正确.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

∴S

正方形ABCD=AB

2=4+

故此选项正确.

故答案为①③⑤.【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.三、解答题(共8题,共72分)17、(1)(1)如图所示见解析;(3)4π+1.【解析】

(1)根据旋转的性质得出对应点位置,即可画出图形;

(1)利用平移的性质得出对应点位置,进而得出图形;

(3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.【详解】(1)如图所示,△A1BC1即为所求;(1)如图所示,△A1B1C1即为所求;(3)由题可得,△ABC扫过的面积==4π+1.【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.18、-5【解析】

根据分式的运算法则即可求出答案.【详解】原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19、(1)见解析;(1)1【解析】

(1)根据角平分线的作图可得;

(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【详解】(1)如图,射线CF即为所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=1.【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.20、44cm【解析】解:如图,设BM与AD相交于点H,CN与AD相交于点G,由题意得,MH=8cm,BH=40cm,则BM=32cm,∵四边形ABCD是等腰梯形,AD=50cm,BC=20cm,∴.∵EF∥CD,∴△BEM∽△BAH.∴,即,解得:EM=1.∴EF=EM+NF+BC=2EM+BC=44(cm).答:横梁EF应为44cm.根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由△BEM∽△BAH,可得出EM,继而得出EF的长度.21、(1)0.3,45;(2);(3)【解析】

(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论