第十三章-协方差分析_第1页
第十三章-协方差分析_第2页
第十三章-协方差分析_第3页
第十三章-协方差分析_第4页
第十三章-协方差分析_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023最新整理收集do

something

合计

X1Y1X2Y2X3Y3XY(“3.中的分析项目”与方差分析一致)(与回归分析一致)(bc:公共回归系数,)dataanocov1;doc=1to3;doi=1to8;inputxy@@;output;end;end;cards;1585138311651276128016911484179017971690181001895211032210619991894228924912083239525100271023010532110;proc

glm;classc;modely=cx/solutionSS3;/*solution:输出回归系数并检验*/lsmeansc/*输出修正均数*//stderr/*输出修正均数的标准误*/pdiff;/*输出修正均数两两比较的P值*/runTheGLMProcedureDependentVariable:ySumofSourceDFSquaresMeanSquareFValuePr>FModel32328.343765776.11458868.20<.0001Error20227.61456811.380728Corrected232555.958333Total总变异组内估计误差均方SourceDFTypeIIISSMeanSquareFValuePr>Fx11010.7604321010.76043288.81<.0001c2707.218765

353.609382

31.07<.0001F=353.609382/11.380728=31.07修正均数的估计误差平方和检验修正均数总差异的F值

StandardParameterEstimateErrortValuePr>|t|Intercept35.94B6.585.47<.0001x2.400.259.42<.0001c112.79B3.413.750.0013c217.34B2.417.20<.0001c30.000B...公共回归系数

LeastSquaresMeansStandardLSMEANcyLSMEANErrorPr>|t|Number194.95863051.8403872<.00011299.50098071.2033114<.00012382.16538871.9643967<.00013LeastSquaresMeansforeffectcPr>|t|forH0:LSMean(i)=LSMean(j)DependentVariable:yi/j12310.04240.001320.0424<.000130.0013<.0001修正均数修正项C1C2C3C1C2C3(P218:表13-6下边合计)(P218:表13-6右边合计)C1C2C3总lxx饲料lxx白鼠lxx

饲料+误差:lxx=383620.127+36943.246=420563.373lyy=48297.627+8399.613=56697.240lxy=135607.964+15102.873=150710.837(=总平方和̵区组间平方和)饲料lxx误差lxx饲料lYY误差lYY饲料lXY误差lYY

估计误差:误差:饲料+误差:(与回归分析一致)误差(饲料+误差)误差lXY

误差lXX

(饲料+误差)lXY

(饲料+误差)lXX

修正均数:(饲料+误差)估计误差(误差)估计误差(修正均数)估计误差误差lXY误差lXXdataa;dob=1to3;doa=1to12;inputxy@@;output;end;end;cards;256.927.0271.641.7210.225.0300.152.0262.214.5304.448.8272.448.0248.29.5242.837.0342.956.5356.976.0198.29.2260.332.0271.147.7214.736.7300.165269.739.0307.537.9278.951.5256.226.7240.841.0340.761.3356.3102.1199.28.1544.7160.3481.296.1418.9114.6556.6134.8394.576.3426.672.8416.199.4549.9133.7580.5147.0608.3165.8559.6169.8371.954.3;proc

glm;classab;modely=xab/solutionSS3;/*solution:输出回归系数及标准误并作检验假设*/lsmeansb/*输出处理b的修正均数*//stderr/*输出修正均数的标准误*/pdiff;/*输出修正均数两两比较的P值*/run;DependentVariable:y

SumofSourceDFSquaresMeanSquareFValuePr>FModel1473529.470805252.1050649.39<.0001Error212233.13892

106.33995Corrected3575762.60972Total估计误差的误差项均方总变异的StandardParameterEstimateErrortValuePr>|t|Intercept-89.11127107B22.52742119-3.960.0007x0.40883873

0.053651367.62<.0001a19.35792946B9.913397400.940.3559a23.26988668B9.572096730.340.7360a324.74717161B8.524578252.900.0085a47.25833106B10.904940980.670.5129a5-2.00952135B8.87619451-0.230.8231a6-7.38646180B9.69901683-0.760.4548a715.43634937B9.134800151.690.1059a8-6.07301243B9.84233062-0.620.5438a910.95811440B9.934221541.100.2825a10-0.55303963B12.57943760-0.040.9653a1123.48323360B12.327776091.900.0706a120.00000000B...b18.37099313B12.540029490.670.5117b216.04318717B12.419235171.290.2105b30.00000000B...bCSourceDFTypeIIISSMeanSquareFValuePr>Fx16175.0305216175.03052158.07<.0001a113761.318706341.9380643.220.0103b2469.156885234.578443

2.210.1350估计误差的修正均数项的均方检验修正均数总差异的F值F=

234.578443/106.33995=2.21

补充:多元协方差分析应用

有30名婴幼儿身高X1(cm)、体重X2(kg)及体表面积Y(cm2)的资料,把身高、体重化为相等后,比较男、女体表面积的修正均值。datali13_b;doi=1to10;doc=1to2;inputx1x2y@@;output;end;end;cards;5432446.25432117.350.52.251928.4532.252200.2512.52094.551.52.51906.256.53.52506.75131850.352321215131632.5769.53845.9777.539348094380.877104180.4749.54314.2779.54246.18094078.47493358.87684134.5737.53809.79613.55830.291125358.497146013.691135601.799166410.694156074.992115283.392125299.494156101.69112.55291.5;proc

glm;classc;modely=cx1x2/solutionSS3;lsmeansc/stderrpdiff;run;

TheGLMProcedureDependentVariable:ySumofSourceDFSquaresMeanSquareFValuePr>FModel368523072.1122841024.04557.41<.0001Error261065399.7640976.91CorrectedTotal2969588471.87

SourceDFTypeIIISSMeanSquareFValuePr>Fc1139769.3397139769.3397

3.410.0762x11938153.7036938153.703622.89<.0001x21368954.7895368954.78959.000.0059

StandardParameterEstimateErrortValuePr>|t|Intercept-1255.559200B493.5333290-2.540.0172c1136.828607B74.08675511.850.0762c20.000000B...x154.47721711.38538034.78<.0001x2130.64510843.53877443.000.0059

TheGLMProcedureLeastSquaresMeansH0:LSMean1=StandardH0:LSMEAN=0LSMean2cyLSMEANErrorPr>|t|Pr>|t|14013.4576452.32694<.00010.076223876.6290352.32694<.0001补充:两因素析因设计

协方差分析例:在棉花产量Y的研究中,考虑2个因素:棉花品种A(A1:37号,A2:213号);种植行距B(B1:30cm,B2:40cm),完全组合4种处理下的重复次数分别为9、16、8、16。棉籽重量X为协变量,试验数据如下,试作两因素析因设计协方差分析。ABXYABXYABXYABXY37308.42.937308.02.537307.42.737308.93.137305.62.137308.02.737307.62.537305.41.537306.92.537404.51.337409.13.137409.03.137408.02.337407.22.237407.62.537409.03.037402.30.637408.73.037408.02.637407.22.537407.62.437406.92.237406.92.537407.62.437404.71.4213304.61.7213306.81.7213303.51.3213302.41.0213303.01.0213302.80.5213303.60.9213306.91.9213407.42.1213404.91.0213405.71.0213403.00.7213404.71.5213405.01.3213407.01.7213402.80.4213405.21.2213405.61.0213405.31.2213404.51.0213405.61.2213402.00.7213404.21.2213401.20.2dataa;inputABxy@@;cards;…………………..;proc

glm;classab;modely=xaba*b/ss3;run;proc

glm;classab;modely=xab/solutionSS3;lsmeansAB/stderrpdiff;run;DependentVariable:ySourceDFTypeIIISSMeanSquareFValuePr>Fx111.6467271211.64672712231.34<.0001A10.955592960.9555929618.98<.0001B10.465391580.465391589.240.0040A*B10.084886200.084886201.690.2009(A、B无交互作用)SourceDFTypeIIISSMeanSquareFValuePr>Fx111.5628144811.56281448226.23<.0001A11.239672861.2396728624.25<.0001B10.449876530.449876538.800.0048(3个因素都对产量y有作用)StandardParameterEstimateErrortValuePr>|t|Intercept-.2726531659B0.10382857-2.630.0118x0.30020407220.0199593215.04<.0001A370.4166533813B0.084602314.92<.0001A2130.0000000000B...B300.2014621753B0.067905932.970.0048B400.0000000000B

(公共回归系数=0.3002040722,P<.0001)TheGLMProcedureLeastSquaresMeans

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论