集合(学生版)-2025高考数学一轮复习讲义_第1页
集合(学生版)-2025高考数学一轮复习讲义_第2页
集合(学生版)-2025高考数学一轮复习讲义_第3页
集合(学生版)-2025高考数学一轮复习讲义_第4页
集合(学生版)-2025高考数学一轮复习讲义_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1讲集合

知识梳理

1、元素与集合

(1)集合中元素的三个特性:确定性、互异性、无序性.

(2)元素与集合的关系:属于或不属于,数学符号分别记为:e和巴

(3)集合的表示方法:列举法、描述法、韦恩图(vem图).

(4)常见数集和数学符号

数集自然数正整数集整数集有理数实数集

集集

符号NN*或ZQR

N.

说明:

①确定性:给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何

一个元素在不在这个集合中就确定了.给定集合/={1,2,3,4,5},可知在该集合中,

6£/,不在该集合中;

②互异性:一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不重复出

现的.

集合A={a,b,c}应满足°丰b丰c-

③无序性:组成集合的元素间没有顺序之分。集合/={1,2,3,4,5}和2={1,3,5,2,4}是同

一个集合.

④列举法

把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.

⑤描述法

用集合所含元素的共同特征表示集合的方法称为描述法.

具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,

再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.

2、集合间的基本关系

(1)子集(SM6S〃):一般地,对于两个集合N、g,如果集合/中任意一个元素都

是集合8中的元素,我们就说这两个集合有包含关系,称集合力为集合8的子集,记作

A=B(或,读作“N包含于(或‘2包含/”).

(2)真子集(propersubset):如果集合/=但存在元素尤^3,且我们称

集合/是集合8的真子集,记作(或3复4).读作“/真包含于8”或“8真包含/

(3)相等:如果集合/是集合3的子集(/=8,且集合B是集合/的子集(B=A),

此时,集合力与集合8中的元素是一样的,因此,集合/与集合8相等,记作/=B.

(4)空集的性质:我们把不含任何元素的集合叫做空集,记作0;0是任何集合的

子集,是任何非空集合的真子集.

3、集合的基本运算

(1)交集:一般地,由属于集合/且属于集合8的所有元素组成的集合,称为《与&

的交集,记作即znB={x|xe4且xe团.

(2)并集:一般地,由所有属于集合/或属于集合3的元素组成的集合,称为/与3

的并集,记作ZU8,即ZU3={xIX€4或/€3}.

(3)补集:对于一个集合/,由全集0中不属于集合/的所有元素组成的集合称为集

合/相对于全集U的补集,简称为集合/的补集,记作Q/,即=且x£/}.

4、集合的运算性质

⑴AoA=A'An0-0>AcB=BcA•

⑵A<JA=A>A<J0-A>ADB=BDA•

(3)/c(")=0,/“")=[/,Cv(C^^)=A.

【解题方法总结】

(1)若有限集/中有〃个元素,则/的子集有2"个,真子集有2"-1个,非空子集有

2"_1个,非空真子集有2"_2个.

(2)空集是任何集合/的子集,是任何非空集合8的真子集.

⑶4=B=ACB=AQAUB=B=CUBUCU4-

⑷J(/A8)=(CVA)U(C®,C0(/U8)=(CVA)nS)•

必考题型全归纳

题型一:集合的表示:列举法、描述法

例1.(2024・广东江门•统考一模)已知集合/=,5={m|m2-le4m-U^},则集

合8中所有元素之和为()

A.0B.1C.-1D.72

例2.(2024•江苏•高三统考学业考试)对于两个非空实数集合/和B,我们把集合

{x\x=a+记作4*8.若集合/={0,1},3={0,-1},则/*台中元素的个数为

()

例3.(2024•全国•高三专题练习)定义集合/+B=卜+引尤©/且ye8}.已知集合

2={2,4,6},8={-1,1},则4+5中元素的个数为()

【解题总结】

1、列举法,注意元素互异性和无序性,列举法的特点是直观、一目了然.

2、描述法,注意代表元素.

题型二:集合元素的三大特征

例4.(2024•北京海淀•校考模拟预测)设集合M={2帆-1,"-3},若—3e",则实数

m=()

A.0B.-iC.0或—iD.0或1

例5.(2024也:西金溪一中校联考模拟预测)己知集合/={1,。,可,5={片M,而},若/=5,

贝1/023+62022=()

A.-1B.0C.1D.2

例6.(2024•北京东城•统考一模)已知集合/={4£—2<0卜且aeZ,则a可以为()

3广

A.-2B.—1C.-D.42

2

【解题方法总结】

1、研究集合问题,看元素是否满足集合的特征:确定性、互异性、无序性。

2、研究两个或者多个集合的关系时,最重要的技巧是将两集合的关系转化为元素间的关系。

题型三:元素与集合间的关系

例7.(2024•河南•开封高中校考模拟预测)已知z=一狈+1<0卜若2G4且304

则。的取值范围是()

例8.(2024•吉林延边・统考二模)已知集合/=冏苏&+2=0}的元素只有一个,则实数

a的值为()

99

A.-B.0C.-或0D.无解

88

例9.(2024•全国•高三专题练习)已知集合4=<(x,j)|^-+y<l,xeZ,jeZ>,则/中

元素的个数为()

A.9B.10C.11D.12

【解题方法总结】

1、一定要牢记五个大写字母所表示的数集,尤其是N与N*的区别.

2、当集合用描述法给出时,一定要注意描述的是点还是数,是还是.

题型四:集合与集合之间的关系

例10.(多选题)(2024•山东潍坊统考一模)若非空集合〃,N,P满足:MCN=N,M2P=P,

则()

A.PqMB.MIP=M

C.N5=P

例11.(2024•江苏•统考一模)设/=,贝(](

A.M<=NB.NuMMr>N=0

例12.(2024•辽宁沈阳•东北育才学校校考模拟预测)己知集合/=卜M-x-12<0},

B=[x\^-3mx+2n^+m-l<0},若“xeZ”是“xeB”的必要不充分条件,则实数用的

取值范围为()

A.[-3,2]B.[-1,3]C.-15-D.2,—

例13.(2024•广东茂名•统考二模)已知集合/=,8={x|2x_a<0},若/=

则实数a的取值范围是()

A.(2,+co)B.[2,+oojC.(-co,2)D.(-co,2]

【解题方法总结】

1、注意子集和真子集的联系与区别.

2、判断集合之间关系的两大技巧:

(1)定义法进行判断

(2)数形结合法进行判断

题型五:集合的交、并、补运算

例14.(2024•广东广州•统考二模)已知集合/=卜卜=3〃-2,〃€]>}*},B={6,7,10,11},

则集合的元素个数为()

A.1B.2C.3D.4

例15.(2024•河北张家口•统考二模)已知集合幺=3|卜—2)(4—x)>0},3=卜|£>0

则(瘠*)=()

A.(2,3)B.[3,4]C.(^»,2]u[3,-h»)D.(-oo,3]u[4,-H»)

例16.(2024•广东•统考一模)已知集合M=3x(x-2)<0},N={x|x-l<0},则下列Venn

例17.(2024•全国•高三专题练习)2021年是中国共产党成立100周年,电影频道推出“

经典频传:看电影,学党史”系列短视频,传扬中国共产党的伟大精神,为广大青年群体

带来

精神感召.现有《青春之歌》《建党伟业》《开国大典》三支短视频,某大学社团有50人,观

看了《青春之歌》的有21人,观看了《建党伟业》的有23人,观看了《开国大典》的有

26人.其中,只观看了《青春之歌》和《建党伟业》的有4人,只观看了《建党伟业》和《开

国大典》的有7人,只观看了《青春之歌》和《开国大典》的有6人,三支短视频全观看了

的有3人,则没有观看任何一支短视频的人数为.

【解题方法总结】

1、注意交集与并集之间的关系

2、全集和补集是不可分离的两个概念

题型六:集合与排列组合的密切结合

例18.(2024•全国•高三专题练习)设集合X={%,0-”N*,定义:集合

¥=,+%]%%集合8=花巾,昨匕x»},集合

T=^-\x,y£Y,x^yy分别用|S|,3|表示集合S,7中元素的个数,则下列结论可能成立

的是()

A.|S|=6B.|S|=16C.|T|=9D.|T|=16

例19.(2024•全国•模拟预测)已知集合力,2满足/U8={1,2,3},若人钻,且[/&刃,

[8&阕表示两个不同的Z8互衬对”,则满足题意的Z8互衬对“个数为()

A.9B.4C.27D.8

例20.(2024•北京•中央民族大学附属中学校考模拟预测)已知集合A满足:①

②必有卜-引22,③集合A中所有元素之和为1QQ,则集合A中元素个数最

多为()

A.11B.10C.9D.8

【解题方法总结】

利用排列与组合思想解决集合或者集合中元素个数的问题,需要运用分析与转化的思

想方法

题型七:集合的创新定义

例21.(2024•全国•校联考模拟预测)对于集合45,定义/-5={x|xe/,且会为.若

A={x\x=2k+\,k^},B={x\x=3k+\,k^},将集合/一5中的元素从小到大排列得

到数列{«„},则%+%)=()

A.55B.76C.110D.113

例22.(多选题)(2024•河南安阳•安阳一中校考模拟预测)由无理数引发的数学危机一

直延续到19世纪•直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分

害I?’来定义无理数(史称戴德金分割),并把实数理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论