![广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类_第1页](http://file4.renrendoc.com/view10/M02/00/31/wKhkGWemwM-AUTNEAAIbLtZ_O_4779.jpg)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类_第2页](http://file4.renrendoc.com/view10/M02/00/31/wKhkGWemwM-AUTNEAAIbLtZ_O_47792.jpg)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类_第3页](http://file4.renrendoc.com/view10/M02/00/31/wKhkGWemwM-AUTNEAAIbLtZ_O_47793.jpg)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类_第4页](http://file4.renrendoc.com/view10/M02/00/31/wKhkGWemwM-AUTNEAAIbLtZ_O_47794.jpg)
![广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类_第5页](http://file4.renrendoc.com/view10/M02/00/31/wKhkGWemwM-AUTNEAAIbLtZ_O_47795.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.二元一次方程组的应用(共1小题)1.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?二.一次函数综合题(共1小题)2.(2023•广东)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.三.二次函数的应用(共1小题)3.(2021•广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.四.二次函数综合题(共2小题)4.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.5.(2021•广东)已知二次函数y=ax2+bx+c的图象过点(﹣1,0),且对任意实数x,都有4x﹣12≤ax2+bx+c≤2x2﹣8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.五.正方形的性质(共1小题)6.(2023•广东)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.六.圆的综合题(共2小题)7.(2023•广东)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.8.(2021•广东)如图,在四边形ABCD中,AB∥CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF∥CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.七.作图—复杂作图(共1小题)9.(2023•广东)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.八.翻折变换(折叠问题)(共1小题)10.(2021•广东)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.二元一次方程组的应用(共1小题)1.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生有7人,该书单价53元.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.二.一次函数综合题(共1小题)2.(2023•广东)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.【答案】(1)当旋转角为22.5°时,OE=OF;(2)FC的长为;(3)S关于n的函数表达式为.【解答】解:(1)当OE=OF时,在Rt△AOE和Rt△COF中,,∴Rt△AOE≌Rt△COF(HL),∴∠AOE=∠COF(即∠AOE=旋转角),∴2∠AOE=45°,∴∠COF=∠AOE=22.5°,∴当旋转角为22.5°时,OE=OF;(2)过点A作AG⊥x轴于点G,则有AG=3,OG=4,∴,∵四边形OABC是正方形,∴OC=OA=5,∠AOC=∠C=90°,又∵∠COF+∠FOA=90°,∠AOG+∠FOA=90°,∴∠COG=∠GOA,∴Rt△AOG∽Rt△FOC,∴,∴,∴FC的长为;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,∵四边形OABC是正方形,∴∠BCA=∠OCA=45°,BC∥OA,又∠FON=45°,∴∠FCN=∠FON=45°,∴F、C、O、N四点共圆,∴∠OFN=∠OCA=45°,∴∠OFN=∠FON=45°,∴△FON是等腰直角三角形,∴FN=NO,∠FNO=90°,∴∠FNP+∠ONQ=90°,又∵∠NOQ+∠ONQ=90°,∴∠NOQ=∠FNP,∴△NOQ≌△FNP(AAS),∴NP=OQ,FP=NQ,∵四边形OQPC是矩形,∴CP=OQ,OC=PQ,∴,=,,=,=,=,∴,又∵△ANQ为等腰直角三角形,∴,∴,∴S关于n的函数表达式为.三.二次函数的应用(共1小题)3.(2021•广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.【答案】(1)猪肉粽每盒进价40元,豆沙粽每盒进价30元;(2)y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.【解答】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a﹣10)元,则,解得:a=40,经检验a=40是方程的解,∴猪肉粽每盒进价40元,豆沙粽每盒进价30元,(2)由题意得,当x=50时,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100﹣2(x﹣50)]盒,∴y=x[100﹣2(x﹣50)]﹣40×[100﹣2(x﹣50)]=﹣2x2+280x﹣8000,配方,得:y=﹣2(x﹣70)2+1800,∵x<70时,y随x的增大而增大,∴当x=65时,y取最大值,最大值为:﹣2×(65﹣70)2+1800=1750(元).答:y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.四.二次函数综合题(共2小题)4.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【答案】(1)y=x2+2x﹣3;(2)△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则PA=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴CF=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=PA•CF﹣PA•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).5.(2021•广东)已知二次函数y=ax2+bx+c的图象过点(﹣1,0),且对任意实数x,都有4x﹣12≤ax2+bx+c≤2x2﹣8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.【答案】(1)二次函数解析式为y=x2﹣2x﹣3;(2)存在,N点的坐标为(1,0)或(5,0)或(,0)或(﹣2﹣,0).【解答】解:(1)不妨令4x﹣12=2x2﹣8x+6,解得:x1=x2=3,当x=3时,4x﹣12=2x2﹣8x+6=0.∴y=ax2+bx+c必过(3,0),又∵y=ax2+bx+c过(﹣1,0),∴,解得:,∴y=ax2﹣2ax﹣3a,又∵ax2﹣2ax﹣3a≥4x﹣12,∴ax2﹣2ax﹣3a﹣4x+12≥0,整理得:ax2﹣2ax﹣4x+12﹣3a≥0,∴a>0且Δ=0,∴(2a+4)2﹣4a(12﹣3a)=0,∴(a﹣1)2=0,∴a=1,b=﹣2,c=﹣3.∴该二次函数解析式为y=x2﹣2x﹣3.(2)存在,理由如下:令y=x2﹣2x﹣3中y=0,得x=3,则A点坐标为(3,0);令x=0,得y=﹣3,则点C坐标为(0,﹣3).设点M坐标为(m,m2﹣2m﹣3),N(n,0),根据平行四边形对角线性质以及中点坐标公式可得:①当AC为对角线时,,即,解得:m1=0(舍去),m2=2,∴n=1,即N1(1,0).②当AM为对角线时,,即,解得:m1=0(舍去),m2=2,∴n=5,即N2(5,0).③当AN为对角线时,,即,解得:m1=1+,m2=1﹣,∴n=或﹣2﹣,∴N3(,0),N4(﹣2﹣,0).综上所述,N点坐标为(1,0)或(5,0)或(,0)或(﹣2﹣,0).五.正方形的性质(共1小题)6.(2023•广东)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.【答案】(1)∠ABC=∠A1B1C1;(2)证明过程见解答.【解答】解:(1)∠ABC=∠A1B1C1;(2)∵A1B1为正方形对角线,∴∠A1B1C1=45°,设每个方格的边长为1,则AB==,AC=BC==,∵AC2+BC2=AB2,∴由勾股定理的逆定理得△ABC是等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠A1B1C1.六.圆的综合题(共2小题)7.(2023•广东)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.【答案】(1)证明过程详见解答;(2)①证明过程详见解答;②.【解答】(1)证明:∵点A关于BD的对称点为A′,∴AE=A′E,AA′⊥BD,∵四边形ABCD是矩形,∴OA=OC,∴OE∥A′C,∴AA′⊥CA′;(2)①证明:如图2,设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,∴OF⊥CD,OF=OE,∵四边形ABCD是矩形,∴OB=OD=BD,AB∥CD,AC=BD,OA=AC,∴OG⊥AB,∠FDO=∠BOG,OA=OB,∴∠GAO=∠GBO,∵∠DOF=∠BOG,∴△DOF≌△BOG(ASA),∴OG=OF,∴OG=OE,由(1)知:AA′⊥BD,∴∠EAO=∠GAO,∵∠EAB+∠GBO=90°,∴∠EAO+∠GAO+∠GBO=90°,∴3∠EAO=90°,∴∠EAO=30°,由(1)知:AA′⊥CA′,∴tan∠EAO=,∴tan30°=,∴;②解:如图3,设⊙O切CA′于点H,连接OH,∴OH⊥CA′,由(1)知:AA′⊥CA′,AA′⊥CA′,OA=OC,∴OH∥AA′,OE∥CA′,∴△COH∽△CAA′,△AOE∽△ACA′,∴,∴AA′=2OH,CA′=2OE,∴AA′=CA′,∴∠A′AC=∠A′CA=45°,∴∠AOE=∠ACA′=45°,∴AE=OE,OD=OA=AE,设AE=OE=x,则OD=OA=,∴DE=OD﹣OE=()x,在Rt△ADE中,由勾股定理得,=1,∴x2=,∴S⊙O=π•OE2=.8.(2021•广东)如图,在四边形ABCD中,AB∥CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF∥CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.【答案】(1)(2)证明见解答;(3)【解答】(1)证明:∵CD=DF,∴∠DCF=∠DFC,∵EF∥CD,∴∠DCF=∠EFC,∴∠DFC=∠EFC,∴∠DFE=2∠EFC,∵AB=AF,∴∠ABF=∠AFB,∵CD∥EF,CD∥AB,∴AB∥EF,∴∠EFB=∠AFB,∴∠AFE=2∠BFE,∵∠AFE+∠DFE=180°,∴2∠BFE+2∠EFC=180°,∴∠BFE+∠EFC=90°,∴∠BFC=90°,∴CF⊥BF;(2)证明:如图1,取AD的中点O,过点O作OH⊥BC于H,∴∠OHC=90°=∠ABC,∴OH∥AB,∵AB∥CD,∴OH∥AB∥CD,∵AB∥CD,AB≠CD,∴四边形ABCD是梯形,∴点H是BC的中点,∴OH=(AB+CD),连接CO并延长交BA的延长线于G,∴∠G=∠DCO,∵∠AOG=∠DOC,OA=OD,∴△AOG≌△DOC(AAS),∴AG=CD,OC=OG,∴OH是△BCG的中位线,∴OH=BG=(AB+AG)=(AF+DF)=AD,∵OH⊥BC,∴以AD为直径的圆与BC相切;(3)如图2,由(1)知,∠DFE=2∠EFC,∵∠DFE=120°,∴∠CFE=60°,在Rt△CEF中,EF=2,∠ECF=90°﹣∠CFE=30°,∴CF=2EF=4,∴CE==2,∵AB∥EF∥CD,∠ABC=90°,∴∠ECD=∠CEF=90°,过点D作DM⊥EF,交EF的延长线于M,∴∠M=90°,∴∠M=∠ECD=∠CEF=90°,∴四边形CEMD是矩形,∴DM=CE=2,过点A作AN⊥EF于N,∴四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基建科前期服务范本合同
- 绿色田园工程建设作业指导书
- 业主装修工程合同
- 全新运输合同终止协议书
- 物流行业最佳实践指南
- 企业人力资源薪酬福利管理作业指导书
- 商品房买卖预售合同
- 旋挖钻机买卖合同
- 个人股权转让协议书
- 借款合同法律常识
- 电镀产业园项目可行性研究报告(专业经典案例)
- 2025年鲁泰集团招聘170人高频重点提升(共500题)附带答案详解
- 2024-2025学年成都高新区七上数学期末考试试卷【含答案】
- 企业员工食堂管理制度框架
- 《辣椒主要病虫害》课件
- 2024年煤矿安全生产知识培训考试必答题库及答案(共190题)
- SLT824-2024 水利工程建设项目文件收集与归档规范
- (完整word版)中国银行交易流水明细清单模版
- DB43∕T 859-2014 高速公路机电工程概预算编制办法及定额
- 燃气轮机LM2500介绍
- (精选)浅谈在小学数学教学中如何进行有效提问
评论
0/150
提交评论