




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学计算题型精练(新高考通用版)
复数的四则运算
Li3+i,的共甄复数为().
A.1+iB.1-iC.-1+iD.-1-i
【答案】A
【详解】因为i3+i4=>i,则其共轨复数为1+i.故选:A
2.若彳=贝ljz=()
1+i
13.13.13.1
A.—+—iB.--------1C.一一+—iD.-------
2222222
【答案】B
2i-l_(2i-l)(l-i)l+3i13.…13.
【详解】因为亍=,所以z二一——1.故选:B
1+i-(l+i)(l-i)22
3.已知z+i=zi,则忖=(
V2
A•----B.0D.1
2cT
【答案】A
_1
[a=—ba~2
【详解】设z=Q+bi,则〃+(6+l)i=0+bi22=—6+0,故6+]=〃,解之得]
Ib=——
[2
所以忖==*.故选:A
4.已知L=l+i(其中i为虚数单位),若胃是z的共辗复数,则z-W=()
Z
A.-1B.1C.-iD.i
【答案】D
i=i(>i)
【详解】由1+i1-i
L=l+i,则亍’则2=三
z1+i(l+i)(l-i)
所以z—N=i.故选:D.
5.Wr(
A.-4+3iB.4+3i
43.43.
C.——+—iD.—+-i
5555
【答案】D
高考数学计算题型精练(新高考通用版)
55(4+3i)5(4+3i)43
【详解】=、一故选:D
4-3i(4-3i)(4+3i)255
6.若复数z满足i.z=4+3i,则同=()
A.2B.V5C.3D.5
【答案】D
4+3i_(4+3i)・i4i-3
【详解】♦.,i,z=4+3i,/.2=-------=3—4i,
ii-i-1
二目=132+(-4)2=5.故选:D.
7+ai
7.若“为实数,且=2—i,贝!Ja=
3+i
A.2B.1C.-1D.-2
【答案】C
【详解】由题意得,”(2-)(3+Ib7
—=—1»故选:C.
ii
8.(1+V3i)2=(
A.2+2"B.2-2月iC.-2+2百iD.-2-2V3i
【答案】C
【详解】(l+V3i)2=l+2V3i+3i2=-2+2V3i;故选:C.
3+i
9.已知复数2=+2i,则忖=()
l+2i
A.1B.V2C.2D.2V2
【答案】B
所以目=J5.故选:B
【详解】因为Z=2±L+21=121>Z21)+21=1_1+21=1+1)
l+2i5
则一()
10.z(l-i)=|l-V3i|,
A.1+iB.1-i
C.2+2iD.2-2i
【答案】B
222(l+i)_2(l+i)
=2,z-------.、/、=1+i,
1-i(l-i)(l+i)2
”l—i.故选:B.
11.设z=—^―,贝!Jz—7=()
1+1
A.-iB.iC.1D.0
高考数学计算题型精练(新高考通用版)
【答案】A
【详解】由题意可得2=占=-4-卜则”3:
11.11.
所以z-亍二---------1—+—1=—i.故选:A
2222
l-3i
12.已知i为虚数单位,复数z=,则匕|=()
2+i
A.2B.6C.V2D.
【答案】C
^l-3i(l-3i)(2-i)-l-7i17.
【详解】——1
2+i(2+i)(2-i)555'
149=后.故选:C.
则目=25+25
13.已知i为虚数单位,复数2满足(l+/i)z=V^+i,则2=)
1.
A.-iB.V3-i——1D.
2222
【答案】D
V3+i(V3+i)(l-V3i)273-2i,31.
【详解】依题意,z=------=————1,
1+V3i-(1+V3i)(l-V3i)422
所以z3+”故选:D
22
14.若复数z=(4-3i)i,则目=()
A.25B.20C.10D.5
【答案】D
【详解】因为2=(4—3i)i=3+4i,所以目=反正=5,故选:D.
15.设复数z满足z(l-i)=4,则目=()
A.20B.1C.D.2
【答案】A
44x(l+i)4+4i
【详解】由z(l-i)=4,得z-------•=2+2i,
1-i(l-i)x(l+i)2
所以忖=万万=20.故选:A.
16.已知复数z=(l-i)(2+ai)(〃£R)在复平面对应的点在实轴上,则。二()
1
A.B.——C.2D.-2
22
高考数学计算题型精练(新高考通用版)
【答案】C
【详解】依题意,Z=(l-i)(2+Qi)=(2+a)+S-2)i,因为复数Z在复平面对应的点在实轴
上,
所以。一2=0,角牟得。=2.故选:C.
17.已知复数z满足(z—1)(2—3i)=3+2i,贝!Jz=()
A.0B.iC.-1+iD.1+i
【答案】D
【详解】V(z-l)(2-3i)=3+2i,
2-3i(2-3i)(2+3i)4+9
故选:D.
18.若复数z满足i^=l-2i,贝|z=()
A.-2-iB.—2+iC.2+iD.2-i
【答案】B
【详解】由已知可得,z=.=2i,从而z一-2+i.故选:B.
i
z3-i
19.设i为虚数单位,若复数z满足三=汨,则z的虚部为()
11-1
A.-2B.-1C.1D.2
【答案】D
z3-i(3-i)(l+i)4+2i
【详解】由:=「=>,=2七,贝帖=2i-l,所以z的虚部为2.故选:D.
il-i+2
20.已知复数z满足(2+i)z=2-4i,贝IJz的虚部为()
A.-2iB.2iC.-2D.2
【答案】C
2-4i(2-4i)(2-i)-10i
【详解】z=^-=<A,==2,故虚部为一2.故选:C
2+i(2+i)(2-i)5
21.已知事=i,i为虚数单位,则2=()
1-21
A.-2+iB.2-iC.2+iD.-2-i
【答案】C
【详解】因为三=i,则z=i(l-2i)=2+i.故选:C.
22.已知复数z满足(1-i)(z-2i)=2i,则z的虚部为()
A.-1B.-iC.3D.3i
【答案】C
高考数学计算题型精练(新高考通用版)
【详解】因为z=3+2i=J],:】)+2i=i-l+2i=-l+3i,所以z的虚部为3,故选:C.
23.已知复数z=〃+i(“£R)满足z2=5,贝I」。的值为()
A.y/~6B.2C.+y[6D.±2
【答案】D
【详解】因为z=a+i,所以22=(a+i)(Q—i)=〃2+i=5,解得〃=±2,故选:D
24.已知复数z是方程x2-2x+2=0的一个根,则目=()
A.1B.2C.V2D.V3
【答案】C
【详解】因为方程1一2》+2=0是实系数方程,且A=(-2)2-4X2=-4<0,
所以该方程有两个互为共钝复数的两个虚数根,即z=^=l土i,所以
\z\=+(±1)2=V2•
故选:C
25.若复数z=U(“eR)是纯虚数,则°=()
A.-2B.2C.-1D.1
【答案】D
【详解】由题意设z=6i(6w0),z=^-=bi,即"2i=6i(2+i)=-b+2历,
\a=—b
则“c,解得:。=1,6=T.故选:D
[26=-2
26.已知复数z满足(l+i)z=3-i,则复数[z|=()
A.2B.V5C.2V2D.VlO
【答案】B
【详解】因为(l+i)z=3-i,则z乎—=
因此,归="+(_2)2=后.故选:B.
27.已知复数2=且+L,则团=()
2211
【答案】C
高考数学计算题型精练(新高考通用版)
【详解】法—:由复数乘法运算得Z?=^-+-i归+'i=-4^i—4-^i=i,则
122乂22)〔22”22J
司=1,
法二:由|z|=g+%=,则团=1,故选:C
22\4411
28.已知复数z满足彳.i=4+3i,则目=
【答案】5
因为同=,3?+42=5,所以目=同=5,故答案为:5.
【答案】l-3i
【详解】出=片上=1-3i.故答案为:l-3i
ii2
30.复数z满足2z+彳=6-i(i是虚数单位),则z的虚部为.
【答案】-1
【详解】令2="+历,则1=°_历,所以2z+3=2(a+6i)+(a-历)=3a+历=6-i,故z的虚
部为-1.
故答案为:-1.
31.设复数z满足(l+i”=2i(i为虚数单位),则2=.
【答案】1+,
【详解】:1+iz=2i,则2=/一=',=1+i.故答案为:i+i.
32.复数4Z2在复平面上对应的点分别为Z1(2,1),Z2(l,-2),则4+2?=.
【答案】3-z/-i+3
【详解】因为复数4,Z?在复平面上对应的点分别为Z1(2,l),Z2(l,-2),
所以4=2+i,z2=l-2i,所以4+z2=3-i,故答案为:3-i.
33.若复数z=;i--(i为虚数单位),则|z-i|=
【答案】V5
【详解】zQ=(f\)卫?=1W所以|z-i|=|l-2i|="+(-2)2=石.故答案
高考数学计算题型精练(新高考通用版)
为:为.
34.若复数z满足z(l-i)=l+2i(i是虚数单位),则复数z=.
13
【答案】__+T*-
22
l+2i(l+2i)(l+i)-l+3i13
【详解】由z(l-i)=1+2i可得z=不一=[忐+^―=一尸>.故答案为:
1—1(1—+222
13.
-----F—1.
22
35.^z(l+2i)=|l+V3i|,贝ijz(l+i)=
【答案】|-|i
【详解】因为z(i+2i)=|i+J§i|=JiT^=2,所以=电,
'11l+2i1+45
,,/.\2—4i/.\2+2i—4i+462.62.
故2(1l+l)=^—X(l+1)=---------------=歹丁.故答案为:---I.
36.若复数z满足%_l=3+6i(其中i是虚数单位),贝1Jz=.
【答案】2-3i
【详解】由2z-l=3+6i,得2z=4+6i,z=2+3i,则z=2-3i.故答案为:2—3i.
iz_
37.已知复数而一+2i,贝匹的虚部为一
【答案】-4
【详解】解:由题意得z=(T+2)(2+1)=(-4+3Q=3+4,
11-1
则[=3-4i,所以I的虚部为一4,故答案为:-4
38.已矢口复数z满足z。+z+lnO,则z-5=.
【答案】1
【详解】因为z2+z+l=(z+;;+[=0,即"+£|=-T=土与
所以,2二」一直4或2=一'+34,
2222
1—1,贝!]]=-'+且i,贝Uzi
若z=——
2222
=UU1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年12月中国疾病预防控制中心公开招聘编制内25人(第二批)笔试历年典型考题(历年真题考点)解题思路附带答案详解-1
- 2024年12月2025年延安市事业单位校园公开招聘(213人)笔试历年典型考题(历年真题考点)解题思路附带答案详解-1
- 重庆智能工程职业学院《消防工程》2023-2024学年第二学期期末试卷
- 淮阴工学院《数值分析》2023-2024学年第二学期期末试卷
- 沈阳北软信息职业技术学院《拓展运动》2023-2024学年第二学期期末试卷
- 西安财经大学行知学院《英语电影中的西方文化》2023-2024学年第二学期期末试卷
- 贵州民用航空职业学院《英美商法》2023-2024学年第二学期期末试卷
- 广西现代职业技术学院《三国法(国公、国私、国经)》2023-2024学年第二学期期末试卷
- 河西学院《比较公共行政学》2023-2024学年第二学期期末试卷
- 宁夏师范学院《土地信息系统》2023-2024学年第二学期期末试卷
- 婚内财产债务协议书(通用)
- 部编版四年级下册道德与法治 第4课 买东西的学问(第2课时) 教学课件
- 慢性活动性EB病毒课件
- 葡萄胎全面版课件
- 《冷冲压工艺与模具设计》完整版ppt课件全套教程
- 业务招待费明细单
- 高效液相色谱法分析(三聚氰胺)原始记录1
- 典雅中国风诗词大会古风PPT模板
- Part 7 Formal and Informal Styles课件
- 文化差异及跨文化交际试题集
- 油画人体张东方姑娘的极致美
评论
0/150
提交评论