2025年新高考数学一轮复习:重难点突破 高等背景下概率论新定义(七大题型)(学生版+解析)_第1页
2025年新高考数学一轮复习:重难点突破 高等背景下概率论新定义(七大题型)(学生版+解析)_第2页
2025年新高考数学一轮复习:重难点突破 高等背景下概率论新定义(七大题型)(学生版+解析)_第3页
2025年新高考数学一轮复习:重难点突破 高等背景下概率论新定义(七大题型)(学生版+解析)_第4页
2025年新高考数学一轮复习:重难点突破 高等背景下概率论新定义(七大题型)(学生版+解析)_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重难点突破03高等背景下概率论新定义

目录

01方法技巧与总结...............................................................2

02题型归纳与总结...............................................................3

题型一:切比雪夫不等式.........................................................3

题型二:马尔科夫链.............................................................5

题型三:卡特兰数...............................................................7

题型四:概率密度函数...........................................................9

题型五:二维离散型随机变量....................................................10

题型六:多项式拟合函数........................................................12

题型七:最大似然估算与大数定律................................................14

03过关测试....................................................................17

亡法牯自与.柒年

//\\

在高等背景下,概率论的新定义涉及更复杂的数学模型和理论框架。方法技巧上,需深入理解随机变

量及其分布、多维随机变量及其相关性,以及大数定律和中心极限定理等核心概念。同时,掌握切比雪夫

不等式、马尔科夫链、卡特兰数等高级概率工具也至关重要。

技巧上,要善于运用概率论知识简化复杂问题的求解过程,如利用概率分布特性减少计算量,或通过

构建概率模型直观理解问题。此外,结合实际问题背景,灵活运用条件概率、贝叶斯公式等也是解题的关

键。

总结来说,高等背景下概率论的新定义强调理论深度与应用广度,要求学习者不仅掌握基础知识,还

需具备灵活运用高级概率工具解决复杂问题的能力。通过不断学习与实践,可以逐步深化对概率论的理解,

提升解题技巧与效率。

题型归赢总结

题型一:切比雪夫不等式

【典例1-11(2024•辽宁沈阳•模拟预测)切比雪夫不等式是19世纪俄国数学家切比雪夫(1821.5~1894.12)

在研究统计规律时发现的,其内容是:对于任一随机变量X,若其数学期望E(X)和方差£>(X)均存在,则

对任意正实数£,有P(|X-E(X)<£”1-2?).根据该不等式可以对事件Ix-E(X)\<€的概率作出估计.

在数字通信中,信号是由数字“0”和“1”组成的序列,现连续发射信号"次,每次发射信号“0”和“1”是等可能

的•记发射信号“1”的次数为随机变量X,为了至少有98%的把握使发射信号“1”的频率在区间(04,0.6)内,

估计信号发射次数〃的值至少为—.

【典例1-2】19世纪俄国数学家切比雪夫在研究统计的规律中,论证并用标准差表达了一个不等式,该不

等式被称为切比雪夫不等式,它可以使人们在随机变量X的分布未知的情况下,对事件因-〃|<£做出估

计.若随机变量X具有数学期望E(X)=〃,方差。(X)=〃,则切比雪夫定理可以概括为:对任意正数£,不

2

等式P(|X-*<£)21-二成立.已知在某通信设备中,信号是由密文“A”和“8”组成的序列,现连续发射

£

信号"次,记发射信号“A”的次数为X.

⑴若每次发射信号“A”和“3”的可能性是相等的,

①当"=5时,求P(X42);

②为了至少有98%的把握使发射信号“A”的频率在0.4与0.6之间,试估计信号发射次数”的最小值;

⑵若每次发射信号“A”和“8”的可能性是7:3,已知在2024次发射中,信号“A”发射加次的概率最大,求

m的值.

【变式1-1](2024•吉林长春•模拟预测)概率论中有很多经典的不等式,其中最著名的两个当属由两位俄

国数学家马尔科夫和切比雪夫分别提出的马尔科夫(Markov)不等式和切比雪夫(Chebyshev)不等

式.马尔科夫不等式的形式如下:

设X为一个非负随机变量,其数学期望为E(X),则对任意£>0,均有尸(*2£)40产,

马尔科夫不等式给出了随机变量取值不小于某正数的概率上界,阐释了随机变量尾部取值概率与其数学期

望间的关系.当X为非负离散型随机变量时,马尔科夫不等式的证明如下:

设X的分布列为P(X=%)",»=1,2,,4其中PiG(0,+00),X,.6[0,+oo)(z=1,2,.■,zz),=1,则对任意

Z=1

£>o,尸(x*)=2口<2%口血/心血="肛,其中符号Za表示对所有满足占泊的

Xj>£Xj>££*Xj>££7=1£X'~S

指标,所对应的A,求和.

切比雪夫不等式的形式如下:

设随机变量X的期望为E(X),方差为O(X),则对任意£>0,均有尸

(1)根据以上参考资料,证明切比雪夫不等式对离散型随机变量X成立.

(2)某药企研制出一种新药,宣称对治疗某种疾病的有效率为80%.现随机选择了100名患者,经过使用该

药治疗后,治愈的人数为60人,请结合切比雪夫不等式通过计算说明药厂的宣传内容是否真实可信.

【变式1-2](2024・浙江・二模)某工厂生产某种元件,其质量按测试指标划分为:指标大于或等于82为合

格品,小于82为次品,现抽取这种元件100件进行检测,检测结果统计如下表:

测试指标[20,76)[76,82)[82,88)[88,94)[94,100]

元件数(件)121836304

(1)现从这100件样品中随机抽取2件,若其中一件为合格品,求另一件也为合格品的概率;

(2)关于随机变量,俄国数学家切比雪夫提出切比雪夫不等式:

若随机变量X具有数学期望E(X)=〃,方差。座人人,则对任意正数£,均有尸(卜一”2£/9成立.

⑴若X~B1100,「证明:P(0<X<25)<^

;

(ii)利用该结论表示即使分布未知,随机变量的取值范围落在期望左右的一定范围内的概率是有界的.若

该工厂声称本厂元件合格率为90%,那么根据所给样本数据,请结合“切比雪夫不等式”说明该工厂所提供

的合格率是否可信?(注:当随机事件A发生的概率小于0.05时,可称事件A为小概率事件)

题型二:马尔科夫链

【典例2-1](2024.高三.广东.开学考试)马尔科夫链因俄国数学家安德烈•马尔科夫得名,其过程具备“无

记忆”的性质,即第附+1次状态的概率分布只跟第〃次的状态有关,与第〃-1,〃-2,〃-3,,次状态无关.马尔

科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金

融领域、天气预测等方面都有着极其广泛的应用.现有A3两个盒子,各装有2个黑球和1个红球,现从

A8两个盒子中各任取一个球交换放入另一个盒子,重复进行〃(〃eN*)次这样的操作后,记A盒子中红球

的个数为X,,恰有1个红球的概率为p„.

⑴求Pi,Pz的值;

⑵求P,,的值(用〃表示);

(3)求证:X”的数学期望E(X“)为定值.

【典例2-2】马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、

自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态

是……Xt_2,Xt^X„Xt+1,那么X小时刻的状态的条件概率仅依赖前一状态X,,即

尸(X,J,XT,XT,X,)=P(X/X,).

现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.

假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每

一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束

赌博游戏:记赌徒的本金为A(AeN*,A〈可一种是赌金达到预期的2元,赌徒停止赌博;另一种是赌徒输

光本金后,赌徒可以向赌场借钱,最多借A元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所

小.

0.50.5

不不

A-1AA+1

IAV1---L—L~~I---L>

022B

0.50.5

当赌徒手中有〃元(-A。(氏”Z)时,最终欠债A元(可以记为该赌徒手中有-A元)概率为月⑺,请

回答下列问题:

⑴请直接写出P(-A)与P(砌的数值.

(2)证明{P5)}是一个等差数列,并写出公差d.

⑶当A=100时,分别计算8=300,8=1500时,P(A)的数值,论述当8持续增大时,P(A)的统计含义.

【变式2-1】马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中

经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布

只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白

球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行”(weN*)次这样的操作,记口袋甲中

黑球的个数为X",恰有1个黑球的概率为Pn.

⑴求Pi,必的值;

⑵求P”的值(用〃表示);

(3)求证:X”的数学期望E(X“)为定值.

【变式2-2](2024・高三・江西•开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”

的性质:下一状态的概率分布只能由当前状态决定,即第w+1次状态的概率分布只与第八次的状态有关,

与第〃-1,〃-2,〃-3,...次的状态无关,即尸(X用|区应,,X,T,X,)=P(X,+/X").已知甲盒中装有1个

白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复”

次(〃eN*)这样的操作,记此时甲盒中白球的个数为X“,甲盒中恰有2个白球的概率为%,恰有1个

白球的概率为%.

⑴求力,々和。2也.

(2)证明:{氏+26“等为等比数列.

⑶求X"的数学期望(用〃表示).

题型三:卡特兰数

【典例3-1】清代数学家明安图所著《割圆密率捷法》中比西方更早提到了“卡特兰数”(以比利时数学家

欧仁•查理・卡特兰的名字命名).有如下问题:在“X”的格子中,从左下角出发走到右上角,每一步只能往

上或往右走一格,且走的过程中只能在左下角与右上角的连线的右下方(不能穿过,但可以到达该连线),

则共有多少种不同的走法?此问题的结果即卡特兰数CM-C:.如图,现有3x4的格子,每一步只能往上

或往右走一格,则从左下角A走到右上角8共有种不同的走法;若要求从左下角A走到右上角3的

过程中只能在直线AC的右下方,但可以到达直线AC,则有种不同的走法.

【典例3-2】(2024・湖北•二模)五一小长假到来,多地迎来旅游高峰期,各大旅游景点都推出了种种新奇

活动以吸引游客,小明去成都某熊猫基地游玩时,发现了一个趣味游戏,游戏规则为:在一个足够长的直

线轨道的中心处有一个会走路的机器人,游客可以设定机器人总共行走的步数,机器人每一步会随机选择

向前行走或向后行走,且每一步的距离均相等,若机器人走完这些步数后,恰好回到初始位置,则视为胜

利.

(1)若小明设定机器人一共行走4步,记机器人的最终位置与初始位置的距离为X步,求X的分布列和期

望;

(2)记口(QN*)为设定机器人一共行走万步时游戏胜利的概率,求Pi,并判断当i为何值时,游戏胜利的概

率最大;

(3)该基地临时修改了游戏规则,要求机器人走完设定的步数后,恰好第一次回到初始位置,才视为胜利.小

明发现,利用现有的知识无法推断设定多少步时获得胜利的概率最大,于是求助正在读大学的哥哥,哥哥

告诉他,“卡特兰数”可以帮助他解决上面的疑惑:将“个。和〃个1排成一排,若对任意的1〈人42〃,在

前上个数中,0的个数都不少于1的个数,则满足条件的排列方式共有种,其中,a“-C吃的结

果被称为卡特兰数.若记£为设定机器人行走2z,步时恰好第一次回到初始位置的概率,证明:对(2)中的

Pi,有耳=P,(zeN*

2z-l

【变式3-1】Catalan数列(卡特兰数列)最早由我国清代数学家明安图(1692-1765)在研究三角函数哥级

数的推导过程中发现,成果发表于1774年出版的《割圜密率捷法》中,后由比利时数学家卡特兰

(Catalan,1814-1894)的名字来命名,该数列的通项被称为第"个Catalan数,其通项公式为

C“=—在组合数学中,有如下结论:由"个+1和”个-1构成的所有数列4,电,

n+1n\\2n—ny.n+1

a3,中,满足“对任意%=1,2,•,2〃,都有4+%++为20”的数列的个数等于。”.

已知在数轴上,有一个粒子从原点出发,每秒向左或向右移动一个单位,且向左移动和向右移动的概率均

(1)设粒子第3秒末所处的位置为随机变量X(若粒子第一秒末向左移一个单位,则位置为-1;若粒子第

一秒末向右移一个单位,则位置为1),求X的分布列和数学期望E(X);

(2)记第"秒末粒子回到原点的概率为pn.

⑴求P4及;

(ii)设粒子在第"秒末第一次回到原点的概率为2“,求0”.

【变式3-2](2024•辽宁大连•二模)大连育明高级中学高三学生在交流2016年全国新课标III卷单选压轴题

时,各抒己见展示各自的解法.

题干:定义''规范01数列”{与}如下:{即}共有2〃?项,其中加项为0,加项为1,且对任意上W2m,

2,,4,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有[14]个.

A同学发现数据较少,可以列出所有情况,得到14个;

8同学在组合数学中学过卡特兰数,fn=^-C\n=C\n-C^,所以此题是〃=4的情况,力=14.

n+1

在一次活动课上,甲、乙俩人设计了一个游戏,抛硬币一次,若正面向上加一分,反面向上减一分.若起始

分为零分,出现负分游戏立刻停止.

(1)求在一次游戏中,恰好在第十一次后结束,中途只出现过两次零分的概率;

(2)如果一个人在一次游戏中,连续抛了十次硬币,求此时积分X的分布列和期望;

(3)参与一次游戏,记总共抛硬币次数为〃,〃的期望为E(”),求满足矶〃)<N的最小正整数N.

题型四:概率密度函数

【典例4-1】设随机变量X的概率密度函数为。(无;仍(当X为离散型随机变量时,p(尤;6)为X=x的概率),

其中。为未知参数,极大似然法是求未知参数e的一种方法.在n次随机试验中,随机变量X的观测值分别

为不,多,…,%,定义乙(。)=夕(%;。)°(々例为似然函数.若8=@时,乙⑹取得最大值,则称

6为参数6的极大似然估计值.

(1)若随机变量X的分布列为

X123

P20(1-0)”0)2

其中0<夕<1.在3次随机试验中,X的观测值分别为1,2,1,求6的极大似然估计值反

⑵某鱼池中有鱼加("亚65)尾,从中捞取50尾,做好记号后放回鱼塘.现从中随机捞取20尾,观测到做记

号的有5尾,求机的极大似然估计值m.

(3)随机变量X的概率密度函数为o">0.右X],%%是X的一组观测值,

J2兀cr

1〃9

证明:参数,的极大似然估计值为4窗-1).

【典例4-2】李明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间

(样本数据),经数据分析得到如下结果:

坐公交车:平均用时30min,方差为36

骑自行车:平均用时34min,方差为4

(1)根据以上数据,李明平时选择哪种交通方式更稳妥?试说明理由.

(2)分别用X和¥表示坐公交车和骑自行车上学所用的时间,X和Y的概率密度曲线如图(a)所示,如果

某天有38min可用,你应选择哪种交通方式?如果仅有34min可用,又应该选择哪种交通方式?试说明理

由.

(提示:(2)中x和y的概率密度曲线分别反映的是x和y的取值落在某个区间的随机事件的概率,例如,

图(b)中阴影部分的面积表示的就是X取值不大于38min时的概率.)

【变式4-1】设随机变量X的概率密度函数为/(©=卜+12二二1°'1)',则尸(“<X,")=『/(X)公,若对

[0,其匕?Ja

X的进行三次独立的观测,事件A=[x”;]至少发生一次的概率为£;

I2J64

(1)对X做”次独立重复的观测,若使得事件A至少发生一次的概率超过95%,求”的最小

值.(In0.05»-2.9958,In0.75=-0.2877)

(2)为满足广大人民群众对接种疫苗的需求,某地区卫生防疫部门为所辖的甲、乙、丙三区提供了批号

分别为1、2、3、4、5的五批次新冠疫苗以供选择,要求每个区只能从中选择一个批号的疫苗接种.由于

某些原因甲区不能选择1、2、4号疫苗,且这三区所选批号互不影响.记“甲区选择3号疫苗”为事件B,

且尸⑻=咕<");

①求三个区选择的疫苗批号互不相同的概率;

②记甲、乙、丙三个区选择的疫苗批号最大数为K,求K的分布列.

题型五:二维离散型随机变量

【典例5-1](2024.江苏常州.一模)设(XJ)是一个二维离散型随机变量,它们的一切可能取的值为

(4也),其中i,jeN*,令4=P(X=%y=6)称为«,/wN*)是二维离散型随机变量(XI)的联合分布

列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;

(XI)4b263

PHP12P13

a2P21P22P23

。3夕31P32P33

现有M〃eN*)个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X,落入

第2号盒子中的球的个数为y.

(1)当〃=2时,求(x,y)的联合分布列,并写成分布表的形式;

(2)设Pk=£尸(X=左,y=m),左eN且左w^^,求£切上的值.

m=Qk=0

(参考公式:若X~B(%p),则£屹:»(1-0)""=牝)

k=0

【典例5-2】(2024•高三・河北保定•开学考试)如果离散型随机变量X的取值为,七,离散型随机

变量y的取值为必,%,%,…,%,贝I称(x,y)为二维离散型随机变量.称(X,y)取

(%,“)G=1,2,%..,〃,/=L2,3,-,m)的概率尸.=%,¥=%)=°式力=1,2,3,・“,",1=1,2,3,,哈马>0为

加〃

(X,y)的联合分布律.记P"=ZP"=P(X=xj(i=l,2,3,,*匕=£p产P(Y=yJ(j=l,2,3,-,m)分别称

;=i;=i

P,.,P.j,为(XI)关于X和关于y的边缘分布律用表格形式表示如下:

Y

%LyX边缘分布律

Xm

4AiP12PimA.

x2P21P22PimP2.

LLLLLL

当PmPn2PnnPn.

y边缘分布律P・iP.2P.m1

(1)现袋中有质地大小均相同的2只白球,3只黑球,现先后随机摸球两次,定义

1第一次摸到白球P第二次摸到白球

第一次摸到黑球分别求有放回和不放回取球下(X,y)的联合分布律和边

01o第二次摸到黑球

缘分布律(表格形式表示);

(2)若二维离散型随机变量(x,y)的联合分布律与边缘分布律满足

Pa=Pi.xP.j(?=1,2,3,­■,,n,J=1,2,3,••,〃,)则称随机变量X与y相互独立.

(i)那么(1)中有放回和不放回取球下的(x,y)是否相互独立并说明理由;

(丑)证明:若x与y相互独立,则分布律中任意两行(或任意两列)对应成比例.

【变式5-1](2024.重庆.三模)己知(X,y)是二维离散型随机变量,其中X、y是两个相互独立的离散型随

机变量,(x,y)的分布列用表格表示如下:

YX036

11j_

0

24128

1j_3

5

848

⑴求尸(x=5)和p(y=o);

(2)"y|X=x”表示在X=x条件下的y的取值,求X=5”的分布列;

⑶E(X)为x的数学期望,E(X|y=%)为y=的分布的期望,证明:

3

E(X)=Z[尸(y=%>E(xiy=x)].

Z=1

题型六:多项式拟合函数

【典例6-1】(2024・甘肃・一模)下表是2017年至2021年连续5年全国研究生在学人数的统计表:

(2)已知2021年全国硕士研究生在学人数约为267.2万人,某地区在学硕士研究生人数占该地在学研究生的

频率值与全国的数据近似.当年该地区要在本地区在学研究生中进行一项网络问卷调查,每位在学研究生均

可进行问卷填写.某天某时段内有4名在学研究生填写了问卷,X表示填写问卷的这4人中硕士研究生的人

数,求X的分布列及数学期望.

£(%一元)(%-9)£龙,一,而7

参考公式及数据:对于回归方程》=欣+血粉=------------=十二------

2(%一元『才无,~nx2

,T,=1

._,2,,2〃("+l)(2w+l)(

n-y-tnx,l2+2O++n=-------------------,〉,》=1470.

6M

【典例6-2】(2024.安徽.一模)碳中和,是指企业、团体或个人测算在一定时间内,直接或间接产生的温

室气体排放总量,通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放,实现二氧化碳的“零

排放”.碳达峰,是指碳排放进入平台期后,进入平稳下降阶段.简单地说就是让二氧化碳排放量“收支相抵”.

中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,

二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”减少碳排放,实现碳中和,人

人都可出一份力.某中学数学教师组织开展了题为“家庭燃气灶旋钮的最佳角度”的数学建模活动.实验假设:

①烧开一壶水有诸多因素,本建模的变量设定为燃气用量与旋钮的旋转角度,其他因素假设一样;

②由生活常识知,旋转角度很小或很大,一壶水甚至不能烧开或造成燃气浪费,因此旋转角度设定在10°

到90。间,建模实验中选取5个代表性数据:18。,36°,54°,72°,90°.

某支数学建模队收集了“烧开一壶水”的实验数据,如下表:

项目

开始烧水时燃气表计数/dn?水烧开时燃气表计数/dn?

旋转角度

18°90809210

36°89589080

54°88198958

72°86708819

90°84988670

以龙表示旋转角度,y表示燃气用量.

(1)用列表法整理数据(x,y);

X(旋转角度:度)1836547290

y(燃气用量:dm3)

(2)假定x,y线性相关,试求回归直线方程§=瓦+双(注:计算结果精确到小数点后三位)

(3)有队员用二次函数进行模拟,得到的函数关系为y=1.903x10-2X2-L472X+150.33.求在该模型中,烧

开一壶水燃气用量最少时的旋转角度.请用相关指数R2分析二次函数模型与线性回归模型哪种拟合效果更

好?(注:计算结果精确到小数点后一位)

参考数据:1%=712,为卜「矶%一==1998,£.4)2=3240,力(%一亚=1501.2,

i=li=l'Z=1i=l

线性回归模型之卜-yJ

269.1,二次函数模型«196.5.

t(x,T(y,T__S(x--Z-)2

参考公式:b=------------------,g=y-凯,R2=1-得-------

2(%TZ(y,-W

1=1Z=1

题型七:最大似然估算与大数定律

【典例7-1](2024.河北张家口.三模)在某项投资过程中,本金为综,进行了N(NwN*)次投资后,资金

为纵(%>。),每次投资的比例均为x(投入资金与该次投入前资金比值),投资利润率为r(所得利润与

当次投入资金的比值,盈利为正,亏损为负)的概率为尸,在实际问题中会有多种盈利可能(设有“种可

能),记利润率为〃的概率为A(其中4eN*),其中《+鸟++匕=1,由大数定律可知,当N足够大时,

利润率是/的次数为N号.

⑴假设第1次投资后的利润率为人投资后的资金记为四,求与综的关系式;

"n

⑵当N足够大时,证明:"=稣“(1+俨r(其中n”,=〃]〃2〃3。〃);

z=li=l

(3)将该理论运用到非赢即输的游戏中,记赢了的概率为月,其利润率为耳;输了的概率为舄,其利润率为

4,求/最大时工的值(用含有片,鸟,?2的代数式表达,其中用+出+时<0).

【典例7-2】(2024•湖北孝感・模拟预测)为落实食品安全的“两个责任”,某市的食品药品监督管理部门和

卫生监督管理部门在市人民代表大会召开之际特别邀请相关代表建言献策.为保证政策制定的公平合理性,

两个部门将首先征求相关专家的意见和建议,已知专家库中共有5位成员,两个部门分别独立地发出批建

邀请的名单从专家库中随机产生,两个部门均邀请2位专家,收到食品药品监督管理部门或卫生监督管理

部门的邀请后,专家如约参加会议.

(1)设参加会议的专家代表共X名,求X的分布列与数学期望.

(2)为增强政策的普适性及可行性,在征求专家建议后,这两个部门从网络评选出的100位热心市民中抽取

部分市民作为群众代表开展座谈会,以便为政策提供支持和补充意见.已知这两个部门的邀请相互独立,邀

请的名单从这100名热心市民中随机产生,食品药品监督管理部门邀请了机(〃?eN*,2<m<100)名代表,

卫生监督管理部门邀请了仆eN',2<n<100)名代表,假设收到食品药品监督管理部门或卫生监督管理部

门的邀请后,群众代表如约参加座谈会,且加+〃>100,请利用最大似然估计法估计参加会议的群众代表

的人数.(备注:最大似然估计即最大概率估计,即当P(X=k)取值最大时,X的估计值为左)

【变式7-1](2024.浙江杭州.二模)在概率统计中,常常用频率估计概率.已知袋中有若干个红球和白球,

有放回地随机摸球,次,红球出现加次.假设每次摸出红球的概率为P,根据频率估计概率的思想,则每

次摸出红球的概率P的估计值为P='.

n

(1)若袋中这两种颜色球的个数之比为1:3,不知道哪种颜色的球多.有放回地随机摸取3个球,设摸出的

球为红球的次数为y,则y〜B(3,p).

(注:笈)表示当每次摸出红球的概率为。时,摸出红球次数为左的概率)

(i)完成下表,并写出计算过程;

k0123

P«Y=k)271

46464

”=外927

46464

(ii)在统计理论中,把使得与(丫=%)的取值达到最大时的P,作为。的估计值,记为p,请写出p的

值.

(2)把(1)中“使得?(丫=%)的取值达到最大时的p作为〃的估计值°”的思想称为最大似然原理.基于最

大似然原理的最大似然参数估计方法称为最大似然估计.具体步骤:先对参数夕构建对数似然函数/(。),

再对其关于参数夕求导,得到似然方程/'(e)=o,最后求解参数e的估计值.已知y〜W",P)的参数。的

数'gn1nJ'其中x,=,Q1,第i次摸出Lu红球•求参数p的估计值,

并且说明频率估计概率的合理性.

【变式7-2](2024.河南•模拟预测)为落实食品安全的“两个责任”,某市的食品药品监督管理部门和卫生

监督管理部门在市人民代表大会召开之际特别邀请相关代表建言献策.为保证政策制定的公平合理性,两

个部门将首先征求相关专家的意见和建议,已知专家库中共有4位成员,两个部门分别独立地发出邀请,

邀请的名单从专家库中随机产生,两个部门均邀请2位专家,收到食品药品监督管理部门或卫生监督管理

部门的邀请后,专家如约参加会议.

(1)用1,2,3,4代表专家库中的4位专家,甲、乙分别代表食品药品监督管理部门和卫生监督管理部门,

将两个部门邀请的专家及参会的专家人数的所有情况绘制成一个表格,请完成如下表格.

(2)最大似然估计即最大概率估计,即当X=%时,概率取得最大值,则X的估计值为左(%=乂,N2,

N3,N,“),其中N,“为X所有可能取值的最大值.请用最大似然估计法估计参加会议的专家人数.

【变式7-3]统计与概率主要研究现实生活中的数据和客观世界中的随机现象,通过对数据的收集、整理、

分析、描述及对事件发生的可能性刻画,来帮助人们作出合理的决策.

⑴现有池塘甲,已知池塘甲里有50条鱼,其中A种鱼7条,若从池塘甲中捉了2条鱼用J表示其中A种

鱼的条数,请写出自的分布列,并求4的数学期望E(J);

(2)另有池塘乙,为估计池塘乙中的鱼数,某同学先从中捉了50条鱼,做好记号后放回池塘,再从中捉了

20条鱼,发现有记号的有5条.

(i)请从分层抽样的角度估计池塘乙中的鱼数.

(ii)统计学中有一种重要而普遍的求估计量的方法一最大似然估计,其原理是使用概率模型寻找能够以

较高概率产生观察数据的系统发生树,即在什么情况下最有可能发生己知的事件.请从条件概率的角度,采

用最大似然估计法估计池塘乙中的鱼数.

1.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安

德雷・马尔可夫命名,由马尔可夫不等式知,若4是只取非负值的随机变量,则对Va>0,都有

尸偌2a)〈乎.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的

年收入超过100万元”为事件A,其概率为P(A).则P(A)的最大值为()

2.在如图所示的正方形中随机投掷10000个点,则落入由曲线C(曲线C为正态分布N(2/2)的概率密度

曲线)与直线工=-1、x=0及y=o所围成的封闭区域内的点的个数的估计值为()

(附:若X〜贝ij尸(〃一b<Xv〃+b)=0.6826,P(〃一2b<Xv〃+2b)=0.9544,

—3bvXv〃+3b)=0.9974

A.2718B.1359

C.430D.215

3.把一正态曲线C/沿着横轴方向向右移动2个单位,得到一条新的曲线Q,下列说法不正确的是()

A.曲线。2仍是正态曲线

B.曲线C/、C2的最高点的纵坐标相等

C.以曲线C2为概率密度曲线的总体的方差比以曲线。为概率密度曲线的总体的方差大2

D.以曲线C2为概率密度曲线的总体的期望比以曲线。为概率密度曲线的总体的期望大2

4.(2024.安徽合肥•模拟预测)某大型电子商务平台每年都会举行“双11”商业促销狂欢活动,现统计了该

平台从2010年到2018年共9年“双11”当天的销售额(单位:亿元)并作出散点图,将销售额y看成以年

份序号x(2010年作为第1年)的函数.运用exce/软件,分别选择回归直线和三次多项式回归曲线进行拟

合,效果如下图,则下列说法错误的是()

A.销售额y与年份序号无呈正相关关系

B.根据三次多项式函数可以预测2019年“双11”当天的销售额约为2684.54亿元

C.三次多项式回归曲线的拟合效果好于回归直线的拟合效果

D.销售额y与年份序号无线性相关不显著

5.(2024・广东肇庆•模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基

石,为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆”的性质:下

一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球

和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,

重复进行w(〃eN*)次这样的操作,记口袋甲中黑球的个数为X",恰有1个黑球的概率为p“,则A的

值是一;£的数学期望E(X“)是—.

6.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一

个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前

状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、

乙两口袋中各任取一个球交换放入另一口袋,重复进行,7(〃wN*)次这样的操作,记甲口袋中黑球个数为

X",恰有1个黑球的概率为P,,,则Pi=—;P,,=—.

7.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是…,X“,X,T,X,,Xm,…,那

么时刻的状态的条件概率仅依赖前一状态X,,即P(X,J.,X,_2,XT,X,)=P(X,」X,).著名的赌徒模型

就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局

赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:

一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本

金为70金币,求赌徒输光所有金币的概率.

8.随机变量的概念是俄国数学家切比雪夫在十九世纪中叶建立和提倡使用的.切比雪夫在数论、概率论、函

数逼近论、积分学等方面均有所建树,他证明了如下以他名字命名的离散型切比雪夫不等式:设X为离散

型随机变量,则P(|X-E(X)|族)2手,其中九为任意大于0的实数.切比雪夫不等式可以使人们在随

机变量X的分布未知的情况下,对事件因-4,2的概率作出估计.

(1)证明离散型切比雪夫不等式;

(2)应用以上结论,回答下面问题:已知正整数〃一5.在一次抽奖游戏中,有〃个不透明的箱子依次编号为

,n,编号为i(l剌冷的箱子中装有编号为0』,-"的,+1个大小、质地均相同的小球.主持人邀请〃位

嘉宾从每个箱子中随机抽取一个球,记从编号为i的箱子中抽取的小球号码为X,,并记X=£上.对任意

,=1i

的〃,是否总能保证p(x京亚历)0.01(假设嘉宾和箱子数能任意多)?并证明你的结论.

附:可能用到的公式(数学期望的线性性质):对于离散型随机变量x,x「x”…,X“满足x=£x,,则有

1=1

E(X)=£E(X)

Z=1

9.(2024・广东茂名•二模)马尔可夫链是因俄国数学家安德烈・马尔可夫得名,其过程具备“无记忆”的性质,

即第〃+1次状态的概率分布只跟第"次的状态有关,与第〃-1,77-2,"-3,…次状态是“没有任何关系的”.现

有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球

交换,重复进行次操作后,记甲盒子中黑球个数为X“,甲盒中恰有1个黑球的概率为与,恰有

2个黑球的概率为2.

⑴求X1的分布列;

(2)求数列{%}的通项公式;

(3)求X”的期望.

10.(2024・全国•模拟预测)卡特兰数是组合数学中一个常在各种计数问题中出现的数列.以比利时的数学

家欧仁・查理・卡特兰(1814-1894)命名.历史上,清代数学家明安图(1692年-1763年)在其《割圜密率

捷法》最早用到“卡特兰数”,远远早于卡塔兰.有中国学者建议将此数命名为“明安图数”或“明安图-卡特

兰数”.卡特兰数是符合以下公式的一个数列:a„=a0G„_1+aA_2++4-%且%=1.如果能把公式化成

上面这种形式的数,就是卡特兰数.卡特兰数是一个十分常见的数学规律,于是我们常常用各种例子来理

解卡特兰数.比如:在一个无穷网格上,你最开始在(0,0)上,你每个单位时间可以向上走一格,或者向右

走一格,在任意一个时刻,你往右走的次数都不能少于往上走的次数,问走到(〃,〃),0刍有多少种不同的

合法路径.记合法路径的总数为4

(1)证明2是卡特兰数;

(2)求4的通项公式.

11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一

个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前

状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙

两口袋中各任取一个球交换放入另一口袋,重复进行次这样的操作,记口袋甲中黑球的个数为

X",恰有1个黑球的概率为P.,恰有2个黑球的概率为4“,恰有。个黑球的概率为九

⑴求Pi,P2的值;

(2)根据马尔科夫链的知识知道P”=。•+b-qn.+c•q-,其中a,6,ce[0,1]为常数,同时p“+/+/=1,

请求出Pn;

⑶求证:匕的数学期望E(X“)为定值.

12.(2024・云南•模拟预测)材料一:英国数学家贝叶斯。701~1763)在概率论研究方面成就显著,创立了

贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来

描述两个条件概率之间的关系.该公式为:设4,4,4是一组两两互斥的事件,AA4=。,且

P(4)>0,z=l,2,-,n,则对任意的事件BcO,P(B)>。,有

14.(2024・高三•河北邯郸・开学考试)设(XJ)是二维离散型随机变量,它们的一切可能取值为(4外),其

中i=l,2,3,,n,j=l,2,3,…,加,则称「(X=%,丫=%)=号(2/0)为二维随机变量强,丫)的联合分布

列.定义:P(X=%)=么=£>「称(p「必.,…)为(X,F)关于X的边际分布列,

7=1

尸(y=x)=p”t>",称(小,%,…)为(X,y)关于y的边际分布列;对于固定的人称

1=1

1

pw=P(X=xi\Y=yi)=^(i=l,2,3,,")为给定丫=为条件下的离散型随机变量X的条件分布列,

Pj

则二维离散型随机变量(x,y)的联合分布列与边际分布列如表:

(x,y)/为

ymp.

aAiP12AmPl.

x2P21P12P2mPl.

XnPnlPn2PnmPn.

PjPlP.2Pm1

⑴求证:对于刃,£p(w)=i;

1=1

(2)若(x,y)的联合分布列与边际分布列如表:

(X,Y)123匕

10.30.10.10.5

20.050.10.150.3

30.050.10.050.2

Pj0.40.30.31

求给定X=2条件下y的条件分布列;

(3)把三个相同的小球等可能地放入编号为1,2,3的三个盒子中.记放入1号盒子的球的个数为X,放入

2号盒子的球的个数为y,则(X,y)是一个二维离散型随机变量.列出(X,y)的联合分布列与边际分布列.

15.已知编号为L2,3的三个袋子中装有除标号外完全相同的小球,其中1号袋子内装有两个1号球,一个

2号球和一个3号球;2号袋子内装有两个1号球,一个3号球;3号袋子内装有三个1号球,两个2号球

和一个3号球.现按照如下规则连续摸球两次;第一次先从1号袋子中随机摸出1个球,并将摸出的球放

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论