2024年中考数学复习讲义-投影与视图_第1页
2024年中考数学复习讲义-投影与视图_第2页
2024年中考数学复习讲义-投影与视图_第3页
2024年中考数学复习讲义-投影与视图_第4页
2024年中考数学复习讲义-投影与视图_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第30讲投影与视图

目录

题型04画简单几何体的三视图

一、考情分析

题型05画简单组合体的三视图

二、知识建构

考点一图形的投影题型06由三视图还原几何体

题型07已知三视图求边长

题型01平行投影

题型08已知三视图求侧面积或表面积

题型02中心投影

题型09求小立方块堆砌图形的表面积

题型03正投影

考点二几何体的三视图题型10已知三视图求体积

题型求几何体视图的面积

题型01判断简单几何体三视图11

题型12由三视图,判断小立方体的个数

题型02判断简单组合体三视图

题型03判断非实心几何体三视图

考点要求新课标要求命题预测

本单元内容以考查几何体的三

图形的投影>通过丰富的实例,了解中心投影和平行投影的概念.视图和正方体的展开图为主,年年都

>会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,会考查,是广大考生的得分点,分值

能判断简单物体的视图,并会根据视图描述简单的几何体.为3分,预计2024年各地中考还将

>了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制出现,并且在选择题出现的可能性较

几何体的三视

作模型.大,一般只考察基础应用,所以考生

>通过实例,了解上述视图与展开图在现实生活中的应用.在复习时要多注重该考点的概念以

及应用.

概念

平行投影特征

小技巧

概念

题型01平行投影

中心投影特征题型02中心投影

题型03止投影

小技巧

概念

投止投影

分类

投影的判断方法

题型01判断简单几何体三视图

图题型判断简单组合题三视图

二视图的概念02

何题型03判断北实心几何体三视图

体三视图之间的关系题型04画简单几何体的二视图

题型05画简单组合体的二视图

的画儿何体三视图的基木方法题型06由三视图还原几何体

三题型已知三视图求边长

由「视图确定几何体的方法07

题型08口知三视图求侧面积或表面积

利用三视图计算几何体面积的方法题型09求小立方块堆砌图形的表面积

图题型10已知二视图求体积

题型11求儿何体视图的面积

题型12由三视图,判断小立方体的个数

考点一图形的投影

・夯基•必备基础龙识推理

投影的定义:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光

线叫做投影线,投影所在的平面叫做投影面.

平行投影的概念:由平行光线形成的投影叫做平行投影.(例如:太阳光)

平行投影的特征:

1)等高的物体垂直地面放置时(图1),在太阳光下,它们的影子一样长.

2)等长的物体平行于地面放置时(图2),它们在太阳光下的影子一样长,且影长等于物体本身的长度.

图1图2

【小技巧】

1)图1中,两个物体及它们各自的影子及光线构成的两个直角三角形相似,相似三角形对应边成比例.

2)已知物体影子可以确定光线,过已知物体顶端及影子顶端作直线,过其他物体顶端作此线的平行线,便

可求出同一时刻其他物体的影子.(理由:同一时刻光线是平行的光线下行成的)

3)在同一时刻,不同物体的物高与影长成正比例,即:'二圭,利用上面的关系式

可以计算高大物体的高度,比如:旗杆/树/楼房的高度等.

4)在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体

影子的指向是:西T西北―北T东北-东,影子长度由长变短再变长.

中心投影的概念:由一点发出的光线形成的投影叫做中心投影.(例如:手电筒、路灯、台灯等)

中心投影的特征:

1)等高的物体垂直地面放置时(图3),在灯光下离点光源近的物体它的影子短,

离点光源远的物体它的影子长.

2)等长的物体平行于地面放置时(图4),一般情况下离点光源越近,影子越长;离点光源越远,影子越短,

但不会比物体本身的长度还短.

【小技巧】

1)点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三

个点的位置.

2)如果一个平面图形所在的平面与投射面平行,那么中心投影后得到的图形与原图形也是平行的,并且中

心投影后得到的图形与原图形相似.

正投影的概念:当平行光线垂直投影面时叫正投影.

正投影的分类:

1)线段的正投影分为三种情况.如图所示.

①线段AB平行于投影面P时,它的正投影是线段AiBi,与线段的长相等;

②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;

③线段AB垂直于投影面P时,它的正投影是一个点.

2)平面图形正投影也分三种情况,如图所示.

①当平面图形平行于投影面。时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与这个平

面图形全等;

②当平面图形倾斜于投影面。时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会缩小,

是类似图形但不一定相似.

③当平面图形垂直于投影面。时,它的正投影是直线.

3)立体图形的正投影

物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体

图形的最大截面全等.

投影的判断方法:

1)判断投影是否为平行投影的方法是看光线是否是平行的,如果光线是平行的,那么所得到的投影就是

平行投影.

2)判断投影是否为中心投影的方法是看光线是否相交于一点,如果光线是相交于一点的,那么所得到的投

影就是中心投影.

.提升-必考题型归纳

题型01平行投影

【例1】(2023•河北衡水•校联考模拟预测)如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片

(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是()

A.①②③④⑤B.②④①③⑤C.⑤④①③②D.⑤③①④②

【答案】B

【分析】太阳的位置和高度决定了影子的方向和长短.一天中,阳光下物体的影子变化规律是上午影子由

长逐渐变短;下午影子由短逐渐变长.方向由西逐渐转向东.

【详解】解:一天中太阳位置的变化规律是:从东到西.太阳的高度变化规律是:低一高一低.影子位置的

变化规律是:从西到东,影子的长短变化规律是:长一短T长,根据影子变化的特点,按时间顺序给这五张

照片排序是②④①③⑤.

故选:B.

【点拨】本题主要考查了平行投影,了解物体在阳光下影子的变化规律是解答此题的关键.

【变式1-1](2021.河北保定.统考二模)三根等高的木杆竖直立在平地上,其俯视图如图所示,在某一时刻

三根木杆在太阳光下的影子合理的是()

\'-\,\r\/

A.-»'B.C.----------D.、

【答案】B

【分析】三根等高的木杆竖直立在平地上,在某一时刻三根木杆在太阳光下的影子应该同方向、长度相等

且平行,据此判断即可.

【详解】解:A.在某一时刻三根木杆在太阳光下的影子的方向应该一致,故本选项错误;

B.在某一时刻三根木杆在太阳光下的影子合理,故本选项正确;

C.在某一时刻三根等高木杆在太阳光下的影子的长度应该相同,故本选项错误;

D.在某一时刻三根木杆在太阳光下的影子的方向应该互相平行,故本选项错误.

故选:B.

【点拨】本题主要考查了平行投影,由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的

影子就是平行投影.

【变式1-2](2023•吉林松原•统考二模)如图,小明想测量一棵大树4B的高度,他发现树的影子落在地面和

墙上,测得地面上的影子BC的长为5m,墙上的影子CD的长为2m.同一时刻,一根长为1m垂直与地面

标杆的影长为0.5m,则大树的高度4B为m.

【答案】12

【分析】设地面影长对应的树高为xm,根据同时同地物高与影长成正比列出比例式求出工,然后加上墙上

的影长CD即为树的高度.

【详解】解:设地面影长对应的树高为%m,

由题意得,|=^,

解得x=10,

•••墙上的影子CD长为2m,

树的高度为10+2=12m.

故答案为:12.

【点拨】本题考查利用投影求物高.熟练掌握同时同地物高与影长成正比是解题的关键.

【变式1-3](2022•浙江温州•统考模拟预测)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于

水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王

诗嫡观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所

示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度》=1:0,75,

在不计圆柱厚度与影子宽度的情况下,请解答下列问题:

(1)若王诗端的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少厘米?

(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这

个猜想是否正确?

(3)若同一时间量得高圆柱落在坡面上的影子长为100cm,则高圆柱的高度为多少厘米?

【答案】(1)120cm;(2)正确;(3)280cm

【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.

(2)根据落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,结合横截面分析可得;

(3)过点/作FGLCE于点G,设FG=4m,CG=3m,利用勾股定理求出CG和FG,得到BG,过点尸作

FMAB于点H,再根据同一时刻身高与影长的比例,求出AH的长度,即可得到A8.

【详解】解:(1)设王诗嬉的影长为xcm,

由题意可得:与=詈,

解得:x=120,

经检验:%=120是分式方程的解,

王诗嬷的的影子长为120cm;

(2)正确,

因为高圆柱在地面的影子与垂直,所以太阳光的光线与垂直,

则在斜坡上的影子也与垂直,则过斜坡上的影子的横截面与垂直,

而横截面与地面垂直,高圆柱也与地面垂直,

二高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;

(3)如图,A8为高圆柱,AF为太阳光,为斜坡,CF为圆柱在斜坡上的影子,

过点尸作于点G,

由题意可得:BC=100,CF=100,

・••斜坡坡度i=1:0.75,

,DE_FG_1_4

*'CE~CG~0.75-3'

.•.设FG=4m,CG=3m,在△CFG中,

(4m)2+(3m)2=1002,

解得:片20,

.*.CG=60,FG=80,

/.BG=BC+CG=160,

过点F作FH±AB于点H,

.・洞一时刻,90cm矮圆柱的影子落在地面上,其长为72cm,

FG±BEzAB±BE,FH1.AB,

可知四边形尸为矩形,

,90_AH_AH

'#72~HF~BG'

9090

:.AH=—xBG=—x160=200,

7272

:.AB=AH+BH=AH+FG=2QQ+S0=280,

故局]圆柱的局]度为280cm.

【点拨】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理

解实际物体与影长之间的关系解决问题,属于中考常考题型.

题型02中心投影

[例2](2021•安徽淮南•校联考模拟预测)下列现象中,属于中心投影的是()

A.白天旗杆的影子B.阳光下广告牌的影子

C.灯光下演员的影子D.中午小明跑步的影子

【答案】C

【分析】根据平行投影和中心投影的定义对各选项进行判断.

【详解】解:A.白天旗杆的影子为平行投影,所以A选项不合题意;

B.阳光下广告牌的影子为平行投影,所以B选项不合题意;

C.灯光下演员的影子为中心投影,所以C选项符合题意;

D.中午小明跑步的影子为平行投影,所以D选项不合题意.

故选:C.

【点拨】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光

的照射下形成的影子就是中心投影.也考查了平行投影.

【变式2-1](2022.北京.一模)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)

与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()

【答案】D

【分析】因为中心投影物体的高和影长成比例,正确的区分中心投影和平行投影,依次分析选项即可找到

符合题意的选项

【详解】因为正方形的对角线互相垂直,且一条对角线垂直地面,光源与对角线组成的平面垂直于地面,

则有影子的对角线仍然互相垂直,且由于光源在平板的的上方,则上方的边长影子会更长一些,

故选D

【点拨】本题考查了中心投影的概念,应用,利用中心投影的特点,理解中心投影物体的高和影长成比例

是解题的关键.

【变式2-2](2023•广东深圳•校考一模)下列是描述小明和小颖在同一盏路灯下影子的图片,其中合理的是

()

【答案】D

【分析】利用“在同一时刻同一地点阳光下的影子的方向应该一致,人与影子的比相等”对各选项进行判断.

【详解】解:小明和小颖在同一盏路灯下影子与身高比例相等且影子方向相反.

故选:D.

【点拨】本题考查中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的

影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影

子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.

【变式2-3](2020•重庆南岸•一模)如图,在平面直角坐标系中,点光源位于P(2,2)处,木杆4B两端的坐标

分别为(0,1),(3,1).则木杆AB在x轴上的影长CD为()

Ay

P

一入、

A/、'、B

.一、、、

~C—O

A.5B.6C.7D.8

【答案】B

【分析】利用中心投影,过点P作PEL。于点E交于点证明AABP〜ACDP,然后利用相似比可

求出CD的长.

【详解】解:如图,过点P作PEI.CD于点E交A8于点M,

Ay

p

f

t'、

A_L_^B

M

COE

根据题意得:ABIICD,

.△ABP〜〉CDP,

■「P(2,2),A(O,1),5(3,1).

:.PE=2,AB=3,ME=1,

:.PM=1,

•空翳,即品

,CD

解得:CD=6

故选:B

【点拨】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影

是放大(即位似变换)的关系.

【变式2-4](2023・福建厦门•统考模拟预测)手影游戏利用的物理原理是:光是沿直线传播的.图中小狗手

影就是我们小时候常玩的游戏.在一次游戏中,小明距离墙壁1米,爸爸拿着的光源与小明的距离为2米.在

小明不动的情况下,要使小狗手影的高度增加一倍,则光源与小明的距离应()

A.减少g米B.增加|米C.减少洙D.增加法

【答案】A

【分析】根据题意作出图形,然后利用相似三角形的性质构建方程求解即可.

【详解】解:如图,点。为光源,2B表示小明的手,CD表示小狗手影,则28IICD,过点。作。E1AB,延

长。岳交。。于F,贝!|0F1CD,

%"

OV二一一旦一―F

D

-:AB||CD,

/.AAOBCOD,贝嗤=器,

-:EF=1米,。E=2米,贝!JOF=3米,

.AB_OE_2

''CD~OF~31

设AB=2k,CD=3k

••・在小明不动的情况下,要使小狗手影的高度增加一倍,如图,

C

生/

Z✓

O'<~—--F'

X

即AB=2k,CD'=6k,EF'=1米,△AO'B"C'O'D'

.ZB_O'E'_1

"'C'D'-O'F'-3'

则。F-O'E'=20'E'=EF',

-O'E'=|米,

,光源与小明的距离变化为:0E-0®=2一;|米,

故选:A.

【点拨】此题考查了中心投影,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立

适当的数学模型来解答问题.

【变式2-5](2023・湖北恩施•校考模拟预测)如图,小华在晚上由路灯4C走向路灯BD.当他走到点P时,

发现他身后影子的顶部刚好接触到路灯4C的底部;当他向前再步行12m到达点Q时,发现他身前影子的

顶部刚好接触到路灯BD的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且4P=QB.

(1)标出小华站在尸处时,在路灯4C下的影子.

(2)求两个路灯之间的距离.

(3)当小华走到路灯8。的底部时,他在路灯2C下的影长是多少?

【答案】(1)画图见解析

⑵两路灯的距离为18m;

⑶当他走到路灯8。时,他在路灯4c下的影长是3.6m.

【分析】(1)连接CM并延长与4B交于点K,从而可得答案;

(2)如图,先证明小APMABD,利用相似比可得AP=\AB,即得BQ=\AB,则防B+12+\AB=AB,

66o6

从而可得答案;

(3)如图,他在路灯4c下的影子为BN,证明△NBMNAC,利用相似三角形的性质得缶=e,然

£>/V+1Oy.O

后利用比例性质求出BN即可.

【详解】(1)解:如图,连接CM并延长与48交于点K,线段PK即为小华站在尸处时,在路灯2C下的影子

cD

,:PM\\BD,

「.△APM-AABD,

.竺=型即竺=竺

•'ABBD'1AB9.6'

.AP=-6AB',

「QB=AP,

-.BQ=IAB,

而AP+PQ+BQ=AB,

11

.'.-AB+12+-AB=AB,

:.AB=18.

答:两路灯的距离为18m;

(3)如图,他在路灯力C下的影子为BN,

cD

图2

■:BM\\AC,

:.ANBMFNAC,

•喘=黑,即BN言,解得BN=3.6.

BN+18

答:当他走到路灯BD时,他在路灯4c下的影长是3.6m.

【点拨】本题考查了相似三角形的应用,投影的含义,要求学生能根据题意画出对应图形,能判定出相似

三角形,以及能利用相似三角形的性质即相似三角形的对应边的比相等的原理解决求线段长的问题等,蕴

含了数形结合的思想方法.

题型03正投影

[例3](2022•浙江温州・温州绣山中学校联考二模)由四个相同小立方体拼成的几何体如图所示,当光线由

上向下垂直照射时,该几何体在水平投影面上的正投影是()

【答案】A

【分析】找到从上面看所得到的图形即可.

【详解】解:从上面看,底层中最右边一个小正方形,上层是三个小正方形,

故选:A.

【点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.

【变式3-1](2022•江西.模拟预测)如图1所示的是一户外遮阳伞支架张开的状态,图1可抽象成图2,在

图2中,点A可在跳)上滑动,当伞完全折叠成图3时,伞的下端点P落在尸'处,点C落在B处,AE=EF,

AC=BC=CE=90cm,DFr=70cm.

WBD的长为.

(2)如图2,当AB=54cm时.

①求NACB的度数;(参考数据:sinl7.5°~0.30,tanl6.7°«0.30,sin36.9°~0.60,tan31.0°~0.60)

②求伞能遮雨的面积(伞的正投影可以看作一个圆).

【答案】(1)250cm

⑵①35°;②294847r

【分析】(1)根据题意可得8。=BF'+F'D,当伞完全折叠成图3时,伞的下端点厂落在F'处,点C落在L

处,可得BF'=EF=AC+CE,代入数据求解即可;

(2)①过点C作CG1AG,根据8C=AC,可得2G=GB=27cm,zXCG=jzXCF,根据sin/ACG=0.3,

sinl7.5°«0.30,即可求解;

②根据题意可知CGIMF,贝UNEHH=17.5°,根据EH=sinl7.5。•2E求得EH,根据勾股定理可得4序=

AE2-E//2,根据正投影是一个圆,根据圆的面积公式求解即可.

【详解】(1)解:.•.8。=BF'+F'D当伞完全折叠成图3时,伞的下端点尸落在?处,点C落在C'处,可

得BF=EFAC+CE

:.BD=BF'+F'D=EF+F'D=AC+CE+F'D=90+90+70=250cm

(2)①如图,过点C作CG1AG

图2

vBC=AC=90cm,AB=54cm

AG=GB=27cm,"CG=|N4CB

AG273

svaZ-ACG==T77右0.3

AC9010

・•・乙4CG=17.5°

・••/.ACB=2乙ACG=35°

②如图,连接转,过点E作E”1AF,

图2

AE=EF

・•.AH=HF

根据题意可知CGII/F

・•.Z.EAH=17.5°

AE—180cm

・•.EH=sinl7.5°-AE=0.3x180=54

・•.AH2=AE2-EH2=1802-542=29484

•••伞能遮雨的面积为294847r

【点拨】本题考查了解直角三角形的应用,正投影,理解题意是解题的关键.

考点二几何体的三视图

■夯基-必备基础知识梳理

三视图的概念:一个物体在三个投影面内同时进行正投影,

①在正面内得到的由前向后观察物体的视图,叫做主视图;

②在水平面内得到的由上向下观察物体的视图,叫做俯视图;

③在侧面内得到的由左向右观察物体的视图,叫做左视图.

主视图、左视图、俯视图叫做物体的三视图.

三视图之间的关系:

1)位置关系:三视图的位置是有规定的,主视图要在左边,它的下方应是俯视图,左视图在其右边,

2)大小关系:三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,

左视图与俯视图的宽相等的原则.

画几何体三视图的基本方法:画一个几何体的三视图时,要从三个方面观察几何体

1)确定主视图的位置,画出主视图;

2)在主视图的正下方画出俯视图,注意与主视图“长对正”;

3)在主视图的正右方画出左视图,注意与主视图“高平齐"与俯视图“宽相等”.

【注意】几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线.

由三视图确定几何体的方法:

1)由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧

面的形状,然后综合起来考虑整体形状.

2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.

利用三视图计算几何体面积的方法:利用三视图先想象出实物形状,再进一步画出展开图,然后计算面积.

■提升.必道蟹归纳

题型01判断简单几何体三视图

[例1](2022.湖北省直辖县级单位.校考二模)下列图形中,主视图和左视图一样的是()

【答案】D

【分析】根据各个几何体的主视图和左视图进行判定即可.

【详解】解:A.主视图和左视图不相同,故本选项不合题意;

B.主视图和左视图不相同,故本选项不合题意;

C.主视图和左视图不相同,故本选项不合题意;

D.主视图和左视图相同,故本选项符合题意;

故选:D.

【点拨】本题考查简单几何体的三视图,解题的关键是掌握各种几何体的三视图的形状.

【变式1-1J(2021•河南驻马店•校联考一模)如图所示的圆锥,下列说法正确的是()

A.该圆锥的主视图是轴对称图形A

B.该圆锥的主视图是中心对称图形/\

c.该圆锥的主视图既是轴对称图形,又是中心对称图形

正面

D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形

【答案】A

【分析】首先判断出圆锥的主视图,再根据主视图的形状判断是轴对称图形,还是中心对称图形,从而可

得答案.

【详解】解:圆锥的主视图是一个等腰三角形,

所以该圆锥的主视图是轴对称图形,不是中心对称图形,故A正确,

该圆锥的主视图是中心对称图形,故B错误,

该圆锥的主视图既是轴对称图形,又是中心对称图形,故C错误,

该圆锥的主视图既不是轴对称图形,又不是中心对称图形,故D错误,

故选A.

【点拨】本题考查的简单几何体的三视图,同时考查了轴对称图形与中心对称图形的识别,掌握以上知识

是解题的关键.

【变式1-2](2022.江苏无锡.统考一模)下列立体图形中,主视图是圆的是()

【答案】D

【分析】分别得出棱柱,圆柱,圆锥,球体的主视图,得出结论.

【详解】解:棱柱的主视图是矩形(中间只有一条线段),不符合题意;

圆柱的主视图是矩形,不符合题意;

圆锥的主视图是等腰三角形,不符合题意;

球体的主视图是圆,符合题意;

故选:D.

【点拨】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.

【变式1-3](2023/工西上饶•校联考一模)如图是一个空心圆柱体,其主视图是()

【答案】B

【分析】找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.

【详解】解:从前面观察物体可以发现:它的主视图应为矩形,

又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,

故选:B.

【点拨】本题考查了三视图的知识,主视图是从物体的正面看得到的视图;注意看得到的棱画实线,看不

到的棱画虚线.

【变式1-4](2023•河北沧州•校考一模)如图,是一个正方体截去一个角后得到的几何体,则该几何体的左

视图是()

【答案】A

【分析】根据左视图是从左面看到的图形判定则可.

【详解】解:从左边看,可得如下图形:

故选:A.

【点拨】本题考查三视图、熟练掌握三视图的定义是解决问题的关键.

题型02判断简单组合体三视图

[例2](2022.辽宁朝阳•模拟预测)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()

【答案】A

【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两

条垂直的虚线,下方有半个正方形.画出图形即可.

【详解】俯视图如图所示.

故选:A.

【点拨】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的

线用实线,看不到而存在的线用虚线.

【变式2-1](2022•山东德州统考一模)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图

是()

]

【答案】C

【分析】根据简单几何体的三视图中俯视图从上面看得到的图形即可求解.

【详解】解:从上面看简单组合体可得两行小正方形,第二行四个小正方形第一行一个小正方形右侧对

齐.

故选C.

【点拨】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.

【变式2-2](2023•海南三亚•一模)如图是5个相同的正方体搭成的立体图形,则它的主视图为()

【答案】A

【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.

【详解】解:从正面看该组合体,所看到的图形与选项A中的图形相同,

故选:A.

【点拨】本题考查简单组合体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.

题型03判断非实心几何体三视图

【例3】(2022.辽宁抚顺.统考二模)如图,将一个长方体内部挖去一个圆柱,这个几何体的主视图是()

【答案】A

【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.

【详解】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.

故选:A.

【点拨】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.

【变式3-1](2021•安徽宿州统考二模)如图所示,左边立体图形的俯视图为

【答案】B

【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示,看不见的用虚线表示.

【详解】解:从上面看,是一个矩形,矩形的中间有两条纵向的实线,两侧分别有一条纵向的虚线.

故选:B.

【点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.

【变式3-2](2021.山东济南.统考一模)如图的几何体是一个空心圆柱,以下给出这个几何体的两种视图正

确的是()

主◎©©

俯O

视O

图n

【答案】D

【分析】利用正视图可排除A与C,利用俯视图可排B,符合要求便可知.

【详解】主视图是从前向后看,由于几何体是一个空心圆柱,看到两个实圆,即圆环,则A.C不正确,俯

视图是从上向下看是长方形,空心圆柱有厚度,但看不到用虚线长方形画在实长方形的里边,则B不正确,

D正确.

故选择:D.

【点拨】本题考查正视图与俯视图,立体图形的视图问题,掌握三视图的概念,会用视图选图是解题关键.

【变式3-3](2023•山东威海•统考一模)如图,是有一块马蹄形磁铁和一块条形磁铁构成的几何体,该几何

体的左视图是()

【答案】D

【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.

【详解】该几何体的左视图如图所示:

故选:D.

【点拨】此题考查了简单几何体的三视图,解答本题的关键是掌握左视图的观察位置.注意:被遮挡的线

条需要用虚线表示.

题型04画简单几何体的三视图

[例4](2023.广东汕头.校联考二模)图中几何体的三视图是()

T曰T曰」三T三

A.匚B.二C.HD.口

【答案】c

【分析】根据图示确定几何体的三视图即可得到答案.

【详解】由几何体可知,该几何体的三视图为

T三

故选C

【点拨】本题考查了简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键,注意实际存在又

没有被其他棱所挡,在所在方向看不到的棱应用虚线表示.

【变式4-1](2022•贵州遵义•统考三模)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的有

()

三棱柱

A.1个B.2个C.3D.4

【答案】B

【分析】分别得出三棱柱、球、圆柱体、正方体的三视图的形状,再判断即可.

【详解】解:三棱柱主视图、左视图都是矩形,而俯视图是三角形,三种视图不相同,

球的主视图、左视图都是矩形,俯视图都是圆,三种视图相同,

圆柱体的主视图、左视图都是矩形,而俯视图是圆形,三种视图不相同;

正方体的三视图都是形状、大小相同的正方形,三种视图相同;

所以三种视图相同的有2种,

故选:B.

【点拨】本题考查简单几何体的三视图,明确球、圆柱、三棱柱、正方体的三视图的形状和大小是正确判

断的前提.

题型05画简单组合体的三视图

[例5](2022•山东青岛•二模)如图是由一些棱长均为1个单位长度的小正方体组合成的简单几何体.

⑴画该几何体的主视图、左视图:

I--I--I--I--I…

主视图左视图

⑵若给该几何体露在外面的面(不含底图)都喷上红漆,则需要喷漆的面积是一;

(3)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,则最多可以再添加一块小正方体.

【答案】(1)见详解;

(2)27;

(3)3.

【分析】(1)根据三视图的概念求解可得;

(2)将主视图、左视图分别乘2的面积,加上俯视图的面积即可得解;

(3)若使该几何体主视图和左视图不变,只可在底层添加方块,可以添加3块小正方体.

【详解】(1)如图所示:

主视图左视图

(2)解:(7x2+4x2)x(1x1)+5x(1x1)

=14+8+5

=27

故答案为:27.

(3)若使该几何体主视图和左视图不变,可在最底层从右数第一至三列的第一行各添加一个,添加3块小

正方体.

故答案为:3.

【点拨】本题主要考查了画三视图,解题的关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出

来,看得见的轮廓线都化成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方

体的数目及位置.

【变式5-1](2021・河北•模拟预测)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几

何体的三视图,正确的是()

正面正面

A.仅主视图不同B.仅俯视图不同

C.仅左视图不同D.主视图、左视图和俯视图都相同

【答案】D

【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.

【详解】第一个几何体的三视图如图所示:

观察可知这两个几何体的主视图、左视图和俯视图都相同,

故选D.

【点拨】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.

【变式5-2](2023・全国•一模)如图是用10个完全相同的小立方体搭成的几何体.

左视图俯视图

(1)已知该几何体的主视图如图所示,请在空白的方格中画出它的左视图和俯视图.

⑵若保持主视图和俯视图不变,最多还可以再搭..个小立方体.

【答案】(1)见解析

⑵3

【分析】(1)根据物体形状即可画出左视图有三列以及主视图、俯视图都有三列,进而画出图形;

(2)可在最左侧前端放两个,后面再放一个,即可得出答案.

【详解】(1)解:画出图如图所示:

正而;

(2)解:保持主视图和俯视图不变,可在最左侧前端放两个,后面再放一个,最多还可以再搭3块小正方

体,

故答案为:3.

【点拨】本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关

键.

【变式5-3](2023.辽宁抚顺.统考三模)如图1,某游乐园门口需要修建一个由正方体和圆柱组合面成的立

体图形,已知正方体的棱长与圆柱的底面直径及高相等,都是2m.

图1图2

(1)图2是这个立体图形主视图、左视图和俯视图的一部分,请将它们补充完整;

(2)为了防腐,需要在这个立体图形表面刷一层油漆.已知油漆每平方米50元,那么一共需要花费多少元?

(兀取3.14)(说明:正方体一底面立于地上,不刷油漆;圆柱一底面立于正方体上,重合部分不刷油漆.)

【答案】⑴见解析

(2)1628兀

【分析】(1)根据三视图的画法分别得出左视图、主视图和俯

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论