




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年天津市静海区高三上学期10月月考数学检测试题考生注意:本试卷分第Ⅰ卷基础题(132分)和第Ⅱ卷提高题(15分)两部分,共147分。3分卷面分。第Ⅰ卷基础题(共132分)一、选择题:每小题5分,共45分.1.已知集合,则(
)A. B. C. D.2.已知为正数,则“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.函数的部分图象大致为(
)A.
B.
C.
D.
4.已知函数是定义在上的偶函数,当时,,则使得成立的的取值范围是(
)A. B.C. D.5.已知,,,则(
)A. B.C. D.6.已知,则(
)A. B. C. D.7.已知函数,,当时,不等式恒成立,则实数a的取值范围为(
)A. B. C. D.8.已知函数的部分图象如图所示,则下列结论正确的是(
)A.的图象关于点对称B.的图象向右平移个单位后得到的图象C.在区间的最小值为D.为偶函数9.如图,在平面四边形中,,,,,,,若点F为边AD上的动点,则的最小值为(
)
A.1 B. C. D.2二、填空题:每小题5分,共30分. 10.已知复数(为虚数单位),其共轭复数为,则的虚部为.11.计算:.12.平面向量,满足,,,则与的夹角为.13.在∆ABC中,内角的对边分别为,且,,,则∆ABC的面积为.14.已知,且,则的最小值为.15.在平面四边形中,,,若,则=;若为边上一动点,当取最小值时,则的值为.三、解答题:(本大题共5小题,共72分)16.(15分)在∆ABC中,内角所对的边分别为.已知,,,.(1)(5分)求和的值;(2)(4分)求三角形BC边的中线长;(3)(6分)求的值.17.(12分)已知函数,的图象的一个对称中心到最近的对称轴的距离为.(1)(5分)求函数的单调递增区间:(2)(7分)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在区间上的值域.18.(15分)设函数.(1)(4分)当时,求在处的切线方程;(2)(4分)讨论的单调性;(3)(7分)若恒成立,求m的取值范围.19.(15分)(1)(4分)设,对任意实数x,记.若有三个零点,则实数a的取值范围是.(2)(4分)已知函数,其中,若方程有三个不同的实数根,则实数k的取值范围.(3)(4分)已知函数,函数有四个零点,则实数的取值范围是.(4)(3分)问题:用数形结合法解决函数零点问题是常用的方法,请总结此方法使用时需要注意什么问题?第Ⅱ卷提高题(共15分)20.(15分)已知函数,().(1)(4分)当时,求曲线在点处的切线方程;(2)(4分)求函数的单调区间;(3)(7分)若对任意恒成立,求整数a的最小值.数学答案一、选择题题号123456789答案DAADACBDB二、填空题10.11.12.13.14.15.,三、解答题16.(1)在中,因为,故由,可得.----1分由已知及余弦定理,有,所以.----3分由正弦定理,得.所以,的值为,的值为.----5分(2)设BC边的中点为D,在中,由余弦定理得:,----9分(3)由(1)及,得,所以,.----12分故.----15分17.(1)因为,----2分又由题,所以,所以,令,则,所以函数的单调递增区间为.----5分(2)由(1),故由题意可得,----7分当,,故由正弦函数图像性质可得,----10分所以即,所以函数y=gx在区间上的值域为.----12分18.(1)当时,,----2分则在处的切线方程为:;----4分(2)由,若,则恒成立,即在上单调递增;若,则时,有,即在上单调递减,时,有,即在上单调递减;综上:若时,在上单调递增;若时,在上单调递减;----8分(3)不等式恒成立,----11分设,易知在上单调递增,又,所以时有,时有,即在上单调递减,在上单调递增,----13分所以,故m的取值范围.----15分19.(1)----4分(2)如图,,则的图像如上,明显地,与不可能有交点,故时不符题意;如图,,则的图像如上,明显地,与有三个不同交点时,必有,解得,而时,明显不符题意;故----8分(3)解:有四个零点等价于与有四个不同的交点当时,,当时,;当时,即在上单调递减,在上单调递增
当时,,此时由此可得图象如下图所示:
恒过,由图象可知,直线位于图中阴影部分时,有四个不同交点即临界状态为与两段图象分别相切当与相切时,可得:当与相切时设切点坐标为,则又恒过,则即,解得:
由图象可知:----12分20.【详解】(1)当时,,所以,所以切线方程为,即.----4分(2)因为,所以,----5分设,则,又因为,所以,即单调递增,又因为,所以时,,即;时,,即,----7分综上可知,函数的单调递减区间为,单调递增区间为.----8分(3)因为对任意恒成,即,,即,即,----11分设,则,易知单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西加油罐采购合同范本
- 锡山区餐饮投资合同范本
- 物业空调安装免责协议书
- 灌溉水渠修复协议书范本
- 用工程货款买房合同范本
- 法律欠款回收协议书范本
- 腻子工工程分包合同范本
- 父母卖房给子女合同范本
- 机械厂临时工合同协议书
- 砖窑摊位转让协议书模板
- 京沪高铁某段现浇箱梁施工方案
- 企业用工风险劳动合同风险防控培训课件
- GB/T 5053.3-2006道路车辆牵引车与挂车之间电连接器定义、试验方法和要求
- 加工中心个人简历
- 最新《工会基础知识》试题库及答案1000题【完美打印版】
- 高周波熔接机操作指导书
- 产钳助产术考核标准
- T∕CCTA 30101-2021 喷气涡流纺棉本色纱
- 上海石化挤出机组交流材料概要课件
- 医院关于成立食堂食品安全领导小组的通知
- 《村卫生室管理办法(试行)》课件(PPT 49页)
评论
0/150
提交评论