基于图的人工智能基准测试框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第1页
基于图的人工智能基准测试框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第2页
基于图的人工智能基准测试框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第3页
基于图的人工智能基准测试框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第4页
基于图的人工智能基准测试框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第5页
已阅读5页,还剩220页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ABSTRACT

TitleofThesis:AFRAMEWORKFORBENCHMARKING

GRAPH-BASEDARTIFICIALINTELLIGENCE

KentDanielO’SullivanMasterofScience,2024

ThesisDirectedby:ProfessorWilliamRegli

DepartmentofComputerScience

Graph-basedArtificialIntelligence(GraphAI)encompassesAIproblemsformulatedusinggraphs,operatingongraphs,orrelyingongraphstructuresforlearning.ContemporaryArtificialIntelligence(AI)researchexploreshowstructuredknowledgefromgraphscanenhanceexistingapproachestomeettherealworld’sdemandsfortransparency,explainability,andperformance.

CharacterizingGraphAIperformanceischallengingbecausedifferentcombinationsofgraphabstractions,representations,algorithms,andhardwareaccelerationtechniquescantriggerun-predictablechangesinefficiency.AlthoughbenchmarksenabletestingdifferentGraphAIim-plementations,mostcannotcurrentlycapturethecomplexinteractionbetweeneffectivenessandefficiency,especiallyacrossdynamicandstructuredknowledgegraphs.

Thisworkproposesanempirical‘grey-box’approachtoGraphAIbenchmarking,providingamethodthatenablesexperimentallytradingbetweeneffectivenessandefficiencyacrossdiffer-entcombinationsofgraphabstractions,representations,algorithms,andhardwareaccelerators.AsystematicliteraturereviewyieldsataxonomyofGraphAItasksandacollectionofintelligence

andsecurityproblemsthatinteractwithGraphAI.Thetaxonomyandproblemsurveyguidethedevelopmentofaframeworkthatfusesempiricalcomputersciencewithconstrainttheoryinanapproachtobenchmarkingthatdoesnotrequireinvasiveworkloadanalysesorcodeinstrumen-tation.

Weformalizeamethodologyfordevelopingproblem-centricGraphAIbenchmarksand

developatooltocreategraphsfromOpenStreetMapsdatatofillagapinreal-worldmesh

graphdatasetsrequiredforbenchmarkinputs.Finally,thisworkprovidesacompletedbench-

markforthePopulationSegmentationIntelligenceandSecurityproblemdevelopedusingthe

GraphAIbenchmarkproblemdevelopmentmethodology.Itprovidesexperimentalresultsthat

validatetheutilityoftheGraphAIbenchmarkframeworkforevaluatingif,how,andwhenGraphAIac-celerationshouldbeappliedtothepopulationsegmentationproblem.

AFRAMEWORKFORBENCHMARKINGGRAPH-BASEDARTIFICIALINTELLIGENCE

by

KentDanielO’Sullivan

ThesissubmittedtotheFacultyoftheGraduateSchoolofthe

UniversityofMaryland,CollegeParkinpartialfulfillment

oftherequirementsforthedegreeof

MasterofScience2024

AdvisoryCommittee:

WilliamRegli,Chair/AdvisorMohammadHajiaghayi

BrianPierce

LaxmanDhulipala

©Copyrightby

KentO’Sullivan

2024

ii

Acknowledgments

Dr.BillRegli,forhisguidanceasmyadvisorandsupportthroughoutmytimeattheUniversityofMaryland.

MyThesisCommittee:Dr.MohammadHajiaghayi,Dr.BrianPierce,andDr.LaxmanDhulipalafortheirtimeandconstructivefeedback.

Nicole,forherextensiveeditingsupport,unwaveringwillingnesstocollaborateonresearch,andinsistenceonpushingmetopublishmyworkoverthelasttwoyears.

Nate,Sam,andTaylor,forthemoraleourstudygroupprovided,andNandiniforourchatsaboutGraphNeuralNetworks.

TheAustralian-AmericanFulbrightCommission,theKinghornFoundation,andtheUniversityofMarylandfortheirscholarshipswhichgavemethemeanstoundertakethiscourseofstudy.

TheAustralianArmy,forsupportingmydesiretostudycomputersciencefortwoyears.

TheAppliedResearchLaboratoryforIntelligenceandSecurityforsupportingmyresearch.

Mostimportantly,tomypartnerMaryforsupportingmeinmovingtotheothersideoftheworldtostudy,pausinghergoalswhileIpursuedmine,andmakingsurethatIsawmoreoftheUnitedStatesthanjusttheinsideoftheComputerScienceDepartment.

iii

TableofContents

Acknowledgements

ii

TableofContents

iii

ListofTables

vi

ListofFigures

vii

ListofAbbreviations

ix

Chapter1:Introduction

1

1.1Motivation

1

1.2ProblemandBackground

2

1.3DevelopingtheGraphAIBenchmarkFrameworkandGraphAIBenchmarkMethod-

ology

5

1.4ApplyingOurGraphAIBenchmarkFramework

8

1.5ApplicationsandImpactoftheGraphAIBenchmarkingFramework

9

1.6ThesisOutline

10

Chapter2:Preliminaries

12

2.1Graph-BasedArtificialIntelligence

12

2.1.1ATaxonomyofGraphAI

13

2.1.2Real-WorldUsesofGraphAI

15

2.2GraphDefinitions

15

2.2.1GraphComponents

16

2.2.2GraphCharacteristics

17

2.2.3GraphTypes

19

2.3GraphTopology

20

2.3.1Real-WorldGraphs

20

2.3.2SyntheticGraphs

21

2.3.3Summary

22

2.4GraphRepresentations

23

2.4.1GraphStorage

23

2.4.2GraphAbstractions

27

2.5GraphPrimitiveOperations

29

2.6ArchitecturalConstraintsforGraphProcessing:Locality

30

iv

2.6.1Locality

31

2.7Summary:OptimizingandEvaluatingGraphAIisaHardProblem

34

Chapter3:LiteratureReview

35

3.1Benchmarking

35

3.1.1Competitive‘Black-Box’Benchmarks

36

3.1.2‘White-Box’Benchmarks

37

3.1.3ConstrainedBenchmarks

38

3.1.4Summary

38

3.2BenchmarkingGraphAI

40

3.2.1TaskCoverage

42

3.2.2DatasetCoverage

46

3.2.3MetricCoverage

49

3.3GraphAIBottlenecks

51

3.3.1MemoryBottlenecks

51

3.3.2ComputationBottlenecks

52

3.3.3CommunicationBottlenecks

53

3.4Summary:GraphAIbenchmarkingrequiresa‘grey-box’approach

53

Chapter4:TheGraphArtificialIntelligenceBenchmarkingFramework

55

4.1Motivation

55

4.2BenchmarkMechanics

56

4.2.1BenchmarkSpecification

57

4.2.2SystemUnderTest

58

4.2.3Grey-BoxEvaluation

59

4.3GraphAIBenchmarkDesign

60

4.3.1EmpiricalBenchmarkDesign

60

4.3.2DesignusingtheTheoryofConstraints

63

4.4OurGraphAIBenchmarkFramework

63

4.5Summary:A‘Grey-Box’GraphAIBenchmarkFramework

68

Chapter5:ThePopulationSegmentationProblem

69

5.1IdentifyandCharacterizethePopulationSegmentationProblem

69

5.1.1Definition

69

5.1.2Tasks

70

5.1.3Datasets

71

5.1.4Outputs

72

5.2IdentifyandCharacterizePhenomenaofInterest

73

5.2.1Efficiency

73

5.2.2Effectiveness

73

5.2.3Cost

74

5.2.4Outputs

75

5.3ConductExploratoryExperimentation

75

5.3.1DatasetsObservations

77

5.3.2ImplementationObservations

77

v

5.3.3Outputs

79

5.4DevelopHypotheses

80

5.4.1StimulatingHardware

81

5.4.2StimulatingRepresentations

82

5.4.3StimulatingCommunityDetection(CD)Implementations

83

5.4.4SelectingHypotheses

84

5.5ConstructtheInvestigationApparatus

85

5.5.1ObservationApparatus

86

5.5.2Datasets

86

5.5.3Tasks

91

5.5.4Metrics

92

5.5.5Limitations

92

5.5.6Outputs

93

5.6AnalyzeResults,DevelopTheoreticExplanationandIterate

94

5.6.1ExperimentSetup

94

5.6.2ExperimentResults

96

5.7Discussion

101

Chapter6:Conclusion

104

6.1FutureWork

104

6.2Conclusion

106

Bibliography

109

vi

ListofTables

2.1TheGraphAItaxonomygroupsGraphAItasksintoGraphAIproblemsandbroader

GraphAIproblemareas

14

2.2AsurveyofGraphAIproblemsintheIntelligenceandSecurity(I&S)domain

16

3.1CoverageofGraphAItasksbyexistingbenchmarksuitesandworkloadanalyses

41

3.2CoverageofGraphAIdatasetsbyexistingbenchmarksuitesandworkloadanalyses.

45

3.3CoverageofGraphAImetricsbyexistingbenchmarksuitesandworkloadanalyses.

48

4.1Summaryofdependenciesbetweenbenchmarkcomponentsandevaluationmetrics.

60

4.2Summaryofexpectedmetricbehaviorswhenabenchmarkcomponentiscon-

strained

66

5.1Exampleproblem-centrictasksforthepopulationsegmentationbenchmark

71

5.2Surveyofcomputationalapproachestopopulationsegmentation,showingeffi-

ciencyandeffectivenessbottlenecks

76

5.3Summaryofdatasetsforthepopulationsegmentationproblemshowingsize,

summarystatisticsanddomain

90

5.4Summaryofexperimentsforthepopulationsegmentationbenchmark.EachSUT

completesthesametasksonthesamedata

96

vii

ListofFigures

1.1TheGraphAItaxonomyconsistsofsixGraphAIproblemareas.Indicativetasks

foreachproblemareaareingrey

2

1.2GraphAIchallengesareahierarchyofdependenciesfoundationallylimitedby

graphprocessing

5

1.3TheGraphAIbenchmarkframeworktakesagrey-boxapproachtobenchmarking,

designinginputstostimulateobservablechangestooutputstoinfersystemand

implementationdetail

6

1.4TheGraphAIbenchmarkdesignmethodologyforcreatingproblem-centricbench-

marks,showinghowmethodologyoutputsmaptobenchmarkcomponents

6

1.5Thehigh-levelviewoftheGraphAIbenchmarkingframework.SUTsinteract

withthebenchmarkthroughanobservationapparatusAPI

9

2.1Examplegraphwithfivenodesandfiveedges

23

2.2AdjacencyListforgraphinFigure2.1.Eachlinerepresentsavertex,withthe

firstinthelistbeingthesourceandeachsubsequentvertexadestinationofanedge.

24

2.3AdjacencyMatrixforgraphinFigure2.1isa|V|×|V|matrixwhereavalueof

1indicatesanedgeand0isnoedge

25

2.4IncidenceMatrixforthegraphinFigure2.1isa|E|×|V|matrixwherea-1is

thesourcenodeand1isthedestinationofagivenedge

26

2.5TheCompressedSparseRow(CSR)formatusesthreeliststorepresentthegraph

inFigure2.1

27

2.6Asimplifiedrepresentationofadirectedgraphinvertexorderwhereeachvertex

isaddedtomemorycreationorder(here,alphabetically).Edgesarenotshown

32

2.7Asimplifiedrepresentationofadirectedgraphinvertexorderwhereeachvertex

isaddedtomemorycreationorderwithattributesstoredseparately.Pointersfrom

topologytoattributesarenotshownforclaritybutcorrespondtothefirstletterof

theattribute

33

3.1Thebasiccomponentsofagenericbenchmarksystem

39

4.1ThecomponentsoftheGraphAIbenchmarkingframework

57

4.2Hooker’smethodologyforanempiricalscienceofalgorithms[1,2]

62

4.3ThecomponentsoftheGraphAIbenchmarkingframework

67

5.1ThecoverageofstaticCDdatasetsshowingtheexpecteddifficultyofeffective-

nessversusefficiency.Redcolorsaremore‘difficult’interactions

91

5.2Theobservationapparatusforthepopulationsegmentationbenchmark

93

viii

5.3TheexperimentscomparethreeSUT,eachwithastaticanditerativeimplemen-

tationoftheLouvainAlgorithm[3]

95

5.4TheGPUimplementationisdrasticallyfasterthantheBaselineandXeonSUT

forthesametasks

97

5.5TheGPUSUTexperiencesadipinNMIforScale-Freedatasetswhileeffective-

nessremainsconstantacrossbothCPU-basedSUTs

97

5.6PorportionofatotalexperimentshowsGPUspendmoretimeonETLrelativeto

totalExecutionTime(ExTime)

99

5.7Theunderlyinghardwareimpactstheperformanceofiterativealgorithms,with

onlytheXeonCPUSUTshowingmonotonicimprovementthatallowstrading

effectivenessforefficiency

100

ix

ListofAbbreviations

A*

A-StarSearch

AI

ArtificialIntelligence

API

ApplicationProgrammingInterface

ARLIS

AppliedResearchLaboratoryforIntelligenceandSecurity

ASIC

ApplicationSpecificIntegratedCircuit

BFS

BreadthFirstSearch

BL

BatchLatency

BR

BatchRate

BS

BenchmarkServer

CD

CommunityDetection

CIMIC

Civil-MilitaryCoorperation

COCO

CommonObjectsinCOntext

CombBLAS

CombinatorialBasicLinearAlgebraSubprograms

CPU

CentralProcessingUnit

CRUD

CreateReadUpdateDelete

CSC

CompressedSparseColumn

CSR

CompressedSparseRow

CUDA

ComputeUniformDeviceArchitecture

CV

ComputerVision

DFS

DepthFirstSearch

ETL

ExtractTransformLoad

ETLTime

ExtractTransform&LoadTime

ExTime

ExecutionTime

GA

GraphAbstraction

GAP

GraphAlgorithmPlatform

GAS

GatherApplyScatter

GBBS

Graph-BasedBenchmarkSuite

GCC

GlobalClusteringCoefficient

GDB

GraphDatabase

GHA

GraphHardwareAccelerator

GM

GraphMining

GNN

GraphNeuralNetwork

GC

GraphClustering

GP

GraphPrediction

GPU

GraphicsProcessingUnit

GPS

GraphProblemSolving

x

GRGraphReasoning

GraphBLASGraphBasicLinearAlgebraSubprogramsGTGraphTransparency

HPCHighPerformanceComputingI&SIntelligenceandSecurity

IOInformationOperations

IPBIntelligencePreperationoftheBattlespace

LCCLocalClusteringCoefficient

LFRLancichinetti,Fortunato,RadicciLLMLargeLanguageModel

MLMachineLearning

NDRNetworkDataRepository

NMINormalizedMutualInformationNLPNaturalLanguageProcessing

MSTMinimumSpanningTreeOSMOpenStreetMaps

RAMRandomAccessMemory

RAGRetrievalAugmentedGenerationRMATRandomMatrix

SCCStronglyConnectedComponentsSLRSystematicLiteratureReview

SLNDCStanfordLargeNetworkDatasetCollectionSNAPStanfordNetworkAnalysisProject

SOTAStateOfTheArt

SSSPSingleSourceShortestPath

SUTSystemUnderTest

SWaPSizeWeightandPowerTCTriangleCounting

TEPSTraversedEdgesperSecondTxTimeTransferTime

UCSUniformCostSearch

VQAVisualQuestionAnswering

WCCWeaklyConnectedComponents

1

Chapter1

Introduction

1.1Motivation

Graphsareexpressivedatastructuresthatencodeevidenceasverticesandcontextualre-lationshipsbetweenevidenceasedges.Aspowerfulabstractionsoftherealworld,graphslendthemselveswelltolearningandreasoningtasks,whichencompassanemergingareaofworkwetermGraph-BasedArtificialIntelligence(GraphAI).WetaxonomizeGraphAIwithintheex-istingAIlandscape,coveringthewell-knownareasofGraphPrediction(GP)[

4

6

]andGraphMining(GM)[

7

]andextendingthosetoincludeGraphProblemSolving(GPS),GraphRea-soning(GR),GraphAbstraction(GA),andGraphTransparency(GT),whicharedetailedinFigure

1.1.

Acrosstheseareas,GraphAIincludestaskslikestructuralanalysis,inferenceovergraphs,andapplicationsofgraphstoAIproblemslikemodeltransparency,explainability,andinterpretability.

AlthoughgraphsareexpressiveandbroadlyapplicabletovariousAIproblems,theyimposeasignificantcomputationalburdenonsystemsthatoperateGraphAI.Intelligentalgorithmsthatoperateongraphsfrequentlyhavequadraticorworsecomplexity,whichlimitstheirusabilityonreal-worldgraphscontainingbillionsortrillionsofvertices.Moderngeneral-purposeprocessorsusecachingandprefetchingtospeedupcomputationoverlargenon-graphinputs.ThechallengewithgraphsisthatmostGraphAIalgorithmsexploitthegraph’sstructureinprocessing,whichrequiresaccesstothedataintopologicalorder.Thatrequirementconflictswithgraphstorage,whichistypicallychronologicalintheorderthatverticesarecreated,meaningtopologicallyclose

2

GraphMining

Q

Graphproblemsolving

Graph

Abstraction

Graph

prediction

Graph

Transparency

Graphsearch

common-sense

Graph

Embedding

GraphNeuralNetworks

Neuro-symbolicAl

Alplanning

communityDetection

ontologicaInference

KGcompletion

RepresentationLearning

KGInference

Graphprediction

post-HOC

Explanation

criticalpath

Graph

Generation

GraphA

Graph

Reasoning

GraphMatching

RAG

InfluenceMapping

Figure1.1:TheGraphAItaxonomyconsistsofsixGraphAIproblemareas.Indicativetasksfor

eachproblemareaareingrey.

verticesarenotnecessarilyproximalinmemory.Withoutcachingbenefits,GraphAIalgorithmsrelyondataretrievedfrommainmemory,whichcausesmemorylatencyandbandwidthbottle-necksthatlimitscalabilityandpreventGraphAIfrombeingdeployedonreal-worldproblemsthatmightotherwisebenefitfromit.

1.2ProblemandBackground

CommonapproachestospeedingupGraphAIprocessingtypicallyusehardware,likespe-cializedacceleratorsordistributedprocessing;representation,likecustomdatastructuresorab-stractionmodels;oralgorithms,likeparallelorapproximatemethods.Theseapproachesarein-terdependent,meaningdecisionsaboutoptimizinghardwarecanlimitchoicesaboutparallelismorprogrammingmodels,whichmakesitdifficulttodeterminetheoptimalconfigurationfora

3

givencollectionofproblems.

Thisthesisaimstodetermineif,how,andwhentospeedupproblem-solvingonGraphAIgivenasetofoperatingconstraints.Specifically,weconsiderhowtoeffectivelycombinerepresenta-tions,hardwareaccelerators,andalgorithmstospeedupGraphAIandunderwhatconditionsaspecificcombinationisappropriateforausecasegivensomeconstraintsonasolution’seffi-ciency,effectiveness,andcost.Priorapproachestoidentifyingif,how,andwhentoaccelerateaGraphAIsystemrelyongenericcompetitivebenchmarksorinvasiveworkloadanalysis,bothofwhichprovideincompleteviewsofGraphAIperformanceacrossmultiplepossiblesystemcon-figurations.

Benchmarkingisaprocessbywhichsystemsorcomponentsarecomparedaccordingtosomecriteria,whichisusedtodeterminetheirrelativeperformance[

8

].MostbenchmarksforGraphAItakea‘black-box’approachtocompetingsystemsbasedonefficiencyoreffectivenessmetricsbutrarelyboth,andnevertheirinteractions.Benchmarkstypicallyfocusonevaluatingisolatedkernel-leveltasksratherthanmorecomplicatedreal-worldproblemsandtypicallyuseasmallselectionofdatasetsthatdonotcoverthebreadthofexpectedinputsizesandshapes.Ex-istingbenchmarksalsolacksupportfordynamicgraphprocessingapproaches,especiallycom-paringdynamicandstaticapproachesunderthesameevaluationframework.

Alternatively,workloadanalysesare‘white-box’approachesthatanalyzetheinternalstateofasystemwhilecompletingaworkloadtoidentifybottlenecks.AlthoughworkloadanalysesyielddetailedinformationabouthowtoacceleratetheSystemUnderTest(SUT),theyrequireaccesstothesystemforprofilingandaccesstothecodeforinstrumentation.Theinvasiveconfig-urationrequirementsmeanworkloadanalysescannotbescaledforgeneral-purposecomparisons,makingthemunsuitableforbroadapplicationtoGraphAI.

4

Inadditiontothechoiceintheanalyticmethod,ahierarchyofotherchallengesunderlaythebroaderproblemofdecidingif,how,andwhentoimproveGraphAIundersomeconstraints,whichweoutlineinFigure

1.2.

Takingauser’stop-downperspectiveofthechallengehierarchy,theusermustfirstdecidethedegreetowhicheffectivenessshouldbetradedforefficiencyorcost.Theneedtomakethistrade-offstemsfromthereal-worldconstraintsimposedonGraphAIsys-tems,suchasarequirementtogeneratearecurringsolutionatapacemorefrequentthantheal-gorithm’sruntimeallows.Further,mostgraphhardwareacceleratorsarespecializedApplicationSpecificIntegratedCircuit(ASIC)andareoptimizedtospeedupaspecificalgorithm,representa-tion,abstraction,andprogrammingmodel.TheproblemwithASICsisthatagivenGraphAIsys-temmayneedtosupportmanygraphtasks,soanacceleratorthatoptimizestheperformanceofasingleGraphAItaskmaynotgarnerabroadenoughimprovementinallGraphAItaskstojustifyitscost.Thesereal-worldchallengesandtrade-offsareparticularlypronouncedforGraphAIbe-causeoftheinherentnatureofgraphprocessingthatunderliesGraphAIproblems.Graphsofdifferentshapesandsizesunpredictablyinfluencealgorithmiccomplexity,includingexacerbat-ingirregularmemoryaccessesandcomputationpatternsthatunderminespatialandtemporallocality.Whencombinedwiththedatadependence,thelackofstandardgraphrepresentationmethods,abstractionmodels,orasetofprimitiveoperationsfurtherpreventsaunityofefforttowardacceleratinggraphprocessingacrossallgraphtasks.

5

Evaluation:

'Racing'systemsorinvasive

analysis?

user:

Realworld:

GraphAl

Graph:

If,HOW,when&constraints?

EffectivenessorEfficiency?

Figure1.2:GraphAIchallengesareahierarchyofdependenciesfoundationallylimitedbygraphprocessing.

1.3DevelopingtheGraphAIBenchmarkFrameworkandGraphAIBenchmarkMethod-

ology.

WeaddresstheseGraphAIissuesbycontributingourGraphAIbenchmarkframework,showninFigure

1.5.

ThebenchmarkevaluatestheperformanceofaSUTusinganInput/OutputobservationapparatustoprovidetheSUTwithproblem-centrictasksanddata,recordthetimetosolution,andverifythecorrectnessofananswer.EachGraphAIbenchmarkintheframeworkisindependent,andwecontributeanempiricalmethodologyforconstructingaproblem-centric,accelerator-agnostic,‘grey-box’GraphAIbenchmarkthatcanevaluateboththeefficiencyandtheeffectivenessofdynamicandstaticGraphAIimplementationsandsystems.

By‘grey-box’,wemeananapproachtobenchmarkingbetweenthefullyopaqueblack-box

6

GREYBOX

-Inputsknown&designedtostimulatebottlenecks.

-systemdetailunknown.-Implementationunknown.

-outputsevaluatedand

analyzedtoinfersystemandimplementationdetail.

WHITEBOX-Inputsknown.

-systemdetailknownandinstrumented.

-Implementationknownandinstrumented.

-outputsrarelyevaluated.

Figure1.3:TheGraphAIbenchmarkframeworktakesagrey-boxapproachtobenchmarking,

designinginputstostimulateobservablechangestooutputstoinfersystemandimplementationdetail.

Datasets

Tasks

Metrics

observationApparatus

Hardware

softwarestack

Implementation

Figure1.4:TheGraphAIbenchmarkdesignmethodologyforcreatingproblem-centricbench-

marks,showinghowmethodologyoutputsmaptobenchmarkcomponents.

7

viewthatnaivelyracessystemsagainsteachotherandtheinvasivewhite-boxviewthatpainstak-inglymonitorstheinternalstateofasystem(Figure

1.3

).Inimplementingagrey-boxview,weuseourGraphAIbenchmarkdesignmethodologytoidentifyexpectedsystemandimplementa-tionbottlenecksanddesignadversarialinputsthatweexpecttostimulatethosebottlenecks.Byevaluatingtheoutputandanalyzingtheefficiencyandeffectivenessacrossdatasets,wecaninferwhichexpectedbottleneckwilllikelycauseanobservedoutputwithoutinvasiveinstrumentation.

Thisapproachofmanipulatinginputstotriggerbottlenecksobservableintheoutputsallowsustoturnoneofthemostsignificantproblemsingraphprocessing(datadependence)intoavaluableasset.

Weemployaformalmethod(Figure

1.4

)thatemphasizesthetransparency,verifiability,andreproducibilityofbenchmarkproblems.Atitscore,themethodconstructsadetailedmap-pingofthecharacteristicsoftheinputgraphstotheoutputsofaGraphAIsystemanddetailshowtointerpretthoseoutputsinthecontextofknownandsuspectedbottlenecksinhardware,representation,andimplementationdecisions.Themethodcomprisessixstepsthatgeneratethecomponentsofthebenchmarkspecificationandtheobservationapparatus.

Theprocessbeginsbyidentifyingausecasetogroundtheprobleminreal-worlddatasetsandcurrentapproaches.Amoredetailedanalysisoftheproblemyieldsinformationaboutthesizeandshapeofthedataandformallyspecifiestheeverydaytasksassociatedwiththatprob-leminnaturallanguage.Formalizingthestudy’sphenomenaincludesidentifyingwhatspecificinteractionsofdatasetandtaskar

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论