版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ABSTRACT
TitleofThesis:AFRAMEWORKFORBENCHMARKING
GRAPH-BASEDARTIFICIALINTELLIGENCE
KentDanielO’SullivanMasterofScience,2024
ThesisDirectedby:ProfessorWilliamRegli
DepartmentofComputerScience
Graph-basedArtificialIntelligence(GraphAI)encompassesAIproblemsformulatedusinggraphs,operatingongraphs,orrelyingongraphstructuresforlearning.ContemporaryArtificialIntelligence(AI)researchexploreshowstructuredknowledgefromgraphscanenhanceexistingapproachestomeettherealworld’sdemandsfortransparency,explainability,andperformance.
CharacterizingGraphAIperformanceischallengingbecausedifferentcombinationsofgraphabstractions,representations,algorithms,andhardwareaccelerationtechniquescantriggerun-predictablechangesinefficiency.AlthoughbenchmarksenabletestingdifferentGraphAIim-plementations,mostcannotcurrentlycapturethecomplexinteractionbetweeneffectivenessandefficiency,especiallyacrossdynamicandstructuredknowledgegraphs.
Thisworkproposesanempirical‘grey-box’approachtoGraphAIbenchmarking,providingamethodthatenablesexperimentallytradingbetweeneffectivenessandefficiencyacrossdiffer-entcombinationsofgraphabstractions,representations,algorithms,andhardwareaccelerators.AsystematicliteraturereviewyieldsataxonomyofGraphAItasksandacollectionofintelligence
andsecurityproblemsthatinteractwithGraphAI.Thetaxonomyandproblemsurveyguidethedevelopmentofaframeworkthatfusesempiricalcomputersciencewithconstrainttheoryinanapproachtobenchmarkingthatdoesnotrequireinvasiveworkloadanalysesorcodeinstrumen-tation.
Weformalizeamethodologyfordevelopingproblem-centricGraphAIbenchmarksand
developatooltocreategraphsfromOpenStreetMapsdatatofillagapinreal-worldmesh
graphdatasetsrequiredforbenchmarkinputs.Finally,thisworkprovidesacompletedbench-
markforthePopulationSegmentationIntelligenceandSecurityproblemdevelopedusingthe
GraphAIbenchmarkproblemdevelopmentmethodology.Itprovidesexperimentalresultsthat
validatetheutilityoftheGraphAIbenchmarkframeworkforevaluatingif,how,andwhenGraphAIac-celerationshouldbeappliedtothepopulationsegmentationproblem.
AFRAMEWORKFORBENCHMARKINGGRAPH-BASEDARTIFICIALINTELLIGENCE
by
KentDanielO’Sullivan
ThesissubmittedtotheFacultyoftheGraduateSchoolofthe
UniversityofMaryland,CollegeParkinpartialfulfillment
oftherequirementsforthedegreeof
MasterofScience2024
AdvisoryCommittee:
WilliamRegli,Chair/AdvisorMohammadHajiaghayi
BrianPierce
LaxmanDhulipala
©Copyrightby
KentO’Sullivan
2024
ii
Acknowledgments
Dr.BillRegli,forhisguidanceasmyadvisorandsupportthroughoutmytimeattheUniversityofMaryland.
MyThesisCommittee:Dr.MohammadHajiaghayi,Dr.BrianPierce,andDr.LaxmanDhulipalafortheirtimeandconstructivefeedback.
Nicole,forherextensiveeditingsupport,unwaveringwillingnesstocollaborateonresearch,andinsistenceonpushingmetopublishmyworkoverthelasttwoyears.
Nate,Sam,andTaylor,forthemoraleourstudygroupprovided,andNandiniforourchatsaboutGraphNeuralNetworks.
TheAustralian-AmericanFulbrightCommission,theKinghornFoundation,andtheUniversityofMarylandfortheirscholarshipswhichgavemethemeanstoundertakethiscourseofstudy.
TheAustralianArmy,forsupportingmydesiretostudycomputersciencefortwoyears.
TheAppliedResearchLaboratoryforIntelligenceandSecurityforsupportingmyresearch.
Mostimportantly,tomypartnerMaryforsupportingmeinmovingtotheothersideoftheworldtostudy,pausinghergoalswhileIpursuedmine,andmakingsurethatIsawmoreoftheUnitedStatesthanjusttheinsideoftheComputerScienceDepartment.
iii
TableofContents
Acknowledgements
ii
TableofContents
iii
ListofTables
vi
ListofFigures
vii
ListofAbbreviations
ix
Chapter1:Introduction
1
1.1Motivation
1
1.2ProblemandBackground
2
1.3DevelopingtheGraphAIBenchmarkFrameworkandGraphAIBenchmarkMethod-
ology
5
1.4ApplyingOurGraphAIBenchmarkFramework
8
1.5ApplicationsandImpactoftheGraphAIBenchmarkingFramework
9
1.6ThesisOutline
10
Chapter2:Preliminaries
12
2.1Graph-BasedArtificialIntelligence
12
2.1.1ATaxonomyofGraphAI
13
2.1.2Real-WorldUsesofGraphAI
15
2.2GraphDefinitions
15
2.2.1GraphComponents
16
2.2.2GraphCharacteristics
17
2.2.3GraphTypes
19
2.3GraphTopology
20
2.3.1Real-WorldGraphs
20
2.3.2SyntheticGraphs
21
2.3.3Summary
22
2.4GraphRepresentations
23
2.4.1GraphStorage
23
2.4.2GraphAbstractions
27
2.5GraphPrimitiveOperations
29
2.6ArchitecturalConstraintsforGraphProcessing:Locality
30
iv
2.6.1Locality
31
2.7Summary:OptimizingandEvaluatingGraphAIisaHardProblem
34
Chapter3:LiteratureReview
35
3.1Benchmarking
35
3.1.1Competitive‘Black-Box’Benchmarks
36
3.1.2‘White-Box’Benchmarks
37
3.1.3ConstrainedBenchmarks
38
3.1.4Summary
38
3.2BenchmarkingGraphAI
40
3.2.1TaskCoverage
42
3.2.2DatasetCoverage
46
3.2.3MetricCoverage
49
3.3GraphAIBottlenecks
51
3.3.1MemoryBottlenecks
51
3.3.2ComputationBottlenecks
52
3.3.3CommunicationBottlenecks
53
3.4Summary:GraphAIbenchmarkingrequiresa‘grey-box’approach
53
Chapter4:TheGraphArtificialIntelligenceBenchmarkingFramework
55
4.1Motivation
55
4.2BenchmarkMechanics
56
4.2.1BenchmarkSpecification
57
4.2.2SystemUnderTest
58
4.2.3Grey-BoxEvaluation
59
4.3GraphAIBenchmarkDesign
60
4.3.1EmpiricalBenchmarkDesign
60
4.3.2DesignusingtheTheoryofConstraints
63
4.4OurGraphAIBenchmarkFramework
63
4.5Summary:A‘Grey-Box’GraphAIBenchmarkFramework
68
Chapter5:ThePopulationSegmentationProblem
69
5.1IdentifyandCharacterizethePopulationSegmentationProblem
69
5.1.1Definition
69
5.1.2Tasks
70
5.1.3Datasets
71
5.1.4Outputs
72
5.2IdentifyandCharacterizePhenomenaofInterest
73
5.2.1Efficiency
73
5.2.2Effectiveness
73
5.2.3Cost
74
5.2.4Outputs
75
5.3ConductExploratoryExperimentation
75
5.3.1DatasetsObservations
77
5.3.2ImplementationObservations
77
v
5.3.3Outputs
79
5.4DevelopHypotheses
80
5.4.1StimulatingHardware
81
5.4.2StimulatingRepresentations
82
5.4.3StimulatingCommunityDetection(CD)Implementations
83
5.4.4SelectingHypotheses
84
5.5ConstructtheInvestigationApparatus
85
5.5.1ObservationApparatus
86
5.5.2Datasets
86
5.5.3Tasks
91
5.5.4Metrics
92
5.5.5Limitations
92
5.5.6Outputs
93
5.6AnalyzeResults,DevelopTheoreticExplanationandIterate
94
5.6.1ExperimentSetup
94
5.6.2ExperimentResults
96
5.7Discussion
101
Chapter6:Conclusion
104
6.1FutureWork
104
6.2Conclusion
106
Bibliography
109
vi
ListofTables
2.1TheGraphAItaxonomygroupsGraphAItasksintoGraphAIproblemsandbroader
GraphAIproblemareas
14
2.2AsurveyofGraphAIproblemsintheIntelligenceandSecurity(I&S)domain
16
3.1CoverageofGraphAItasksbyexistingbenchmarksuitesandworkloadanalyses
41
3.2CoverageofGraphAIdatasetsbyexistingbenchmarksuitesandworkloadanalyses.
45
3.3CoverageofGraphAImetricsbyexistingbenchmarksuitesandworkloadanalyses.
48
4.1Summaryofdependenciesbetweenbenchmarkcomponentsandevaluationmetrics.
60
4.2Summaryofexpectedmetricbehaviorswhenabenchmarkcomponentiscon-
strained
66
5.1Exampleproblem-centrictasksforthepopulationsegmentationbenchmark
71
5.2Surveyofcomputationalapproachestopopulationsegmentation,showingeffi-
ciencyandeffectivenessbottlenecks
76
5.3Summaryofdatasetsforthepopulationsegmentationproblemshowingsize,
summarystatisticsanddomain
90
5.4Summaryofexperimentsforthepopulationsegmentationbenchmark.EachSUT
completesthesametasksonthesamedata
96
vii
ListofFigures
1.1TheGraphAItaxonomyconsistsofsixGraphAIproblemareas.Indicativetasks
foreachproblemareaareingrey
2
1.2GraphAIchallengesareahierarchyofdependenciesfoundationallylimitedby
graphprocessing
5
1.3TheGraphAIbenchmarkframeworktakesagrey-boxapproachtobenchmarking,
designinginputstostimulateobservablechangestooutputstoinfersystemand
implementationdetail
6
1.4TheGraphAIbenchmarkdesignmethodologyforcreatingproblem-centricbench-
marks,showinghowmethodologyoutputsmaptobenchmarkcomponents
6
1.5Thehigh-levelviewoftheGraphAIbenchmarkingframework.SUTsinteract
withthebenchmarkthroughanobservationapparatusAPI
9
2.1Examplegraphwithfivenodesandfiveedges
23
2.2AdjacencyListforgraphinFigure2.1.Eachlinerepresentsavertex,withthe
firstinthelistbeingthesourceandeachsubsequentvertexadestinationofanedge.
24
2.3AdjacencyMatrixforgraphinFigure2.1isa|V|×|V|matrixwhereavalueof
1indicatesanedgeand0isnoedge
25
2.4IncidenceMatrixforthegraphinFigure2.1isa|E|×|V|matrixwherea-1is
thesourcenodeand1isthedestinationofagivenedge
26
2.5TheCompressedSparseRow(CSR)formatusesthreeliststorepresentthegraph
inFigure2.1
27
2.6Asimplifiedrepresentationofadirectedgraphinvertexorderwhereeachvertex
isaddedtomemorycreationorder(here,alphabetically).Edgesarenotshown
32
2.7Asimplifiedrepresentationofadirectedgraphinvertexorderwhereeachvertex
isaddedtomemorycreationorderwithattributesstoredseparately.Pointersfrom
topologytoattributesarenotshownforclaritybutcorrespondtothefirstletterof
theattribute
33
3.1Thebasiccomponentsofagenericbenchmarksystem
39
4.1ThecomponentsoftheGraphAIbenchmarkingframework
57
4.2Hooker’smethodologyforanempiricalscienceofalgorithms[1,2]
62
4.3ThecomponentsoftheGraphAIbenchmarkingframework
67
5.1ThecoverageofstaticCDdatasetsshowingtheexpecteddifficultyofeffective-
nessversusefficiency.Redcolorsaremore‘difficult’interactions
91
5.2Theobservationapparatusforthepopulationsegmentationbenchmark
93
viii
5.3TheexperimentscomparethreeSUT,eachwithastaticanditerativeimplemen-
tationoftheLouvainAlgorithm[3]
95
5.4TheGPUimplementationisdrasticallyfasterthantheBaselineandXeonSUT
forthesametasks
97
5.5TheGPUSUTexperiencesadipinNMIforScale-Freedatasetswhileeffective-
nessremainsconstantacrossbothCPU-basedSUTs
97
5.6PorportionofatotalexperimentshowsGPUspendmoretimeonETLrelativeto
totalExecutionTime(ExTime)
99
5.7Theunderlyinghardwareimpactstheperformanceofiterativealgorithms,with
onlytheXeonCPUSUTshowingmonotonicimprovementthatallowstrading
effectivenessforefficiency
100
ix
ListofAbbreviations
A*
A-StarSearch
AI
ArtificialIntelligence
API
ApplicationProgrammingInterface
ARLIS
AppliedResearchLaboratoryforIntelligenceandSecurity
ASIC
ApplicationSpecificIntegratedCircuit
BFS
BreadthFirstSearch
BL
BatchLatency
BR
BatchRate
BS
BenchmarkServer
CD
CommunityDetection
CIMIC
Civil-MilitaryCoorperation
COCO
CommonObjectsinCOntext
CombBLAS
CombinatorialBasicLinearAlgebraSubprograms
CPU
CentralProcessingUnit
CRUD
CreateReadUpdateDelete
CSC
CompressedSparseColumn
CSR
CompressedSparseRow
CUDA
ComputeUniformDeviceArchitecture
CV
ComputerVision
DFS
DepthFirstSearch
ETL
ExtractTransformLoad
ETLTime
ExtractTransform&LoadTime
ExTime
ExecutionTime
GA
GraphAbstraction
GAP
GraphAlgorithmPlatform
GAS
GatherApplyScatter
GBBS
Graph-BasedBenchmarkSuite
GCC
GlobalClusteringCoefficient
GDB
GraphDatabase
GHA
GraphHardwareAccelerator
GM
GraphMining
GNN
GraphNeuralNetwork
GC
GraphClustering
GP
GraphPrediction
GPU
GraphicsProcessingUnit
GPS
GraphProblemSolving
x
GRGraphReasoning
GraphBLASGraphBasicLinearAlgebraSubprogramsGTGraphTransparency
HPCHighPerformanceComputingI&SIntelligenceandSecurity
IOInformationOperations
IPBIntelligencePreperationoftheBattlespace
LCCLocalClusteringCoefficient
LFRLancichinetti,Fortunato,RadicciLLMLargeLanguageModel
MLMachineLearning
NDRNetworkDataRepository
NMINormalizedMutualInformationNLPNaturalLanguageProcessing
MSTMinimumSpanningTreeOSMOpenStreetMaps
RAMRandomAccessMemory
RAGRetrievalAugmentedGenerationRMATRandomMatrix
SCCStronglyConnectedComponentsSLRSystematicLiteratureReview
SLNDCStanfordLargeNetworkDatasetCollectionSNAPStanfordNetworkAnalysisProject
SOTAStateOfTheArt
SSSPSingleSourceShortestPath
SUTSystemUnderTest
SWaPSizeWeightandPowerTCTriangleCounting
TEPSTraversedEdgesperSecondTxTimeTransferTime
UCSUniformCostSearch
VQAVisualQuestionAnswering
WCCWeaklyConnectedComponents
1
Chapter1
Introduction
1.1Motivation
Graphsareexpressivedatastructuresthatencodeevidenceasverticesandcontextualre-lationshipsbetweenevidenceasedges.Aspowerfulabstractionsoftherealworld,graphslendthemselveswelltolearningandreasoningtasks,whichencompassanemergingareaofworkwetermGraph-BasedArtificialIntelligence(GraphAI).WetaxonomizeGraphAIwithintheex-istingAIlandscape,coveringthewell-knownareasofGraphPrediction(GP)[
4
–
6
]andGraphMining(GM)[
7
]andextendingthosetoincludeGraphProblemSolving(GPS),GraphRea-soning(GR),GraphAbstraction(GA),andGraphTransparency(GT),whicharedetailedinFigure
1.1.
Acrosstheseareas,GraphAIincludestaskslikestructuralanalysis,inferenceovergraphs,andapplicationsofgraphstoAIproblemslikemodeltransparency,explainability,andinterpretability.
AlthoughgraphsareexpressiveandbroadlyapplicabletovariousAIproblems,theyimposeasignificantcomputationalburdenonsystemsthatoperateGraphAI.Intelligentalgorithmsthatoperateongraphsfrequentlyhavequadraticorworsecomplexity,whichlimitstheirusabilityonreal-worldgraphscontainingbillionsortrillionsofvertices.Moderngeneral-purposeprocessorsusecachingandprefetchingtospeedupcomputationoverlargenon-graphinputs.ThechallengewithgraphsisthatmostGraphAIalgorithmsexploitthegraph’sstructureinprocessing,whichrequiresaccesstothedataintopologicalorder.Thatrequirementconflictswithgraphstorage,whichistypicallychronologicalintheorderthatverticesarecreated,meaningtopologicallyclose
2
GraphMining
Q
Graphproblemsolving
Graph
Abstraction
Graph
prediction
Graph
Transparency
Graphsearch
common-sense
Graph
Embedding
GraphNeuralNetworks
Neuro-symbolicAl
Alplanning
communityDetection
ontologicaInference
KGcompletion
RepresentationLearning
KGInference
Graphprediction
post-HOC
Explanation
criticalpath
Graph
Generation
GraphA
Graph
Reasoning
GraphMatching
RAG
InfluenceMapping
Figure1.1:TheGraphAItaxonomyconsistsofsixGraphAIproblemareas.Indicativetasksfor
eachproblemareaareingrey.
verticesarenotnecessarilyproximalinmemory.Withoutcachingbenefits,GraphAIalgorithmsrelyondataretrievedfrommainmemory,whichcausesmemorylatencyandbandwidthbottle-necksthatlimitscalabilityandpreventGraphAIfrombeingdeployedonreal-worldproblemsthatmightotherwisebenefitfromit.
1.2ProblemandBackground
CommonapproachestospeedingupGraphAIprocessingtypicallyusehardware,likespe-cializedacceleratorsordistributedprocessing;representation,likecustomdatastructuresorab-stractionmodels;oralgorithms,likeparallelorapproximatemethods.Theseapproachesarein-terdependent,meaningdecisionsaboutoptimizinghardwarecanlimitchoicesaboutparallelismorprogrammingmodels,whichmakesitdifficulttodeterminetheoptimalconfigurationfora
3
givencollectionofproblems.
Thisthesisaimstodetermineif,how,andwhentospeedupproblem-solvingonGraphAIgivenasetofoperatingconstraints.Specifically,weconsiderhowtoeffectivelycombinerepresenta-tions,hardwareaccelerators,andalgorithmstospeedupGraphAIandunderwhatconditionsaspecificcombinationisappropriateforausecasegivensomeconstraintsonasolution’seffi-ciency,effectiveness,andcost.Priorapproachestoidentifyingif,how,andwhentoaccelerateaGraphAIsystemrelyongenericcompetitivebenchmarksorinvasiveworkloadanalysis,bothofwhichprovideincompleteviewsofGraphAIperformanceacrossmultiplepossiblesystemcon-figurations.
Benchmarkingisaprocessbywhichsystemsorcomponentsarecomparedaccordingtosomecriteria,whichisusedtodeterminetheirrelativeperformance[
8
].MostbenchmarksforGraphAItakea‘black-box’approachtocompetingsystemsbasedonefficiencyoreffectivenessmetricsbutrarelyboth,andnevertheirinteractions.Benchmarkstypicallyfocusonevaluatingisolatedkernel-leveltasksratherthanmorecomplicatedreal-worldproblemsandtypicallyuseasmallselectionofdatasetsthatdonotcoverthebreadthofexpectedinputsizesandshapes.Ex-istingbenchmarksalsolacksupportfordynamicgraphprocessingapproaches,especiallycom-paringdynamicandstaticapproachesunderthesameevaluationframework.
Alternatively,workloadanalysesare‘white-box’approachesthatanalyzetheinternalstateofasystemwhilecompletingaworkloadtoidentifybottlenecks.AlthoughworkloadanalysesyielddetailedinformationabouthowtoacceleratetheSystemUnderTest(SUT),theyrequireaccesstothesystemforprofilingandaccesstothecodeforinstrumentation.Theinvasiveconfig-urationrequirementsmeanworkloadanalysescannotbescaledforgeneral-purposecomparisons,makingthemunsuitableforbroadapplicationtoGraphAI.
4
Inadditiontothechoiceintheanalyticmethod,ahierarchyofotherchallengesunderlaythebroaderproblemofdecidingif,how,andwhentoimproveGraphAIundersomeconstraints,whichweoutlineinFigure
1.2.
Takingauser’stop-downperspectiveofthechallengehierarchy,theusermustfirstdecidethedegreetowhicheffectivenessshouldbetradedforefficiencyorcost.Theneedtomakethistrade-offstemsfromthereal-worldconstraintsimposedonGraphAIsys-tems,suchasarequirementtogeneratearecurringsolutionatapacemorefrequentthantheal-gorithm’sruntimeallows.Further,mostgraphhardwareacceleratorsarespecializedApplicationSpecificIntegratedCircuit(ASIC)andareoptimizedtospeedupaspecificalgorithm,representa-tion,abstraction,andprogrammingmodel.TheproblemwithASICsisthatagivenGraphAIsys-temmayneedtosupportmanygraphtasks,soanacceleratorthatoptimizestheperformanceofasingleGraphAItaskmaynotgarnerabroadenoughimprovementinallGraphAItaskstojustifyitscost.Thesereal-worldchallengesandtrade-offsareparticularlypronouncedforGraphAIbe-causeoftheinherentnatureofgraphprocessingthatunderliesGraphAIproblems.Graphsofdifferentshapesandsizesunpredictablyinfluencealgorithmiccomplexity,includingexacerbat-ingirregularmemoryaccessesandcomputationpatternsthatunderminespatialandtemporallocality.Whencombinedwiththedatadependence,thelackofstandardgraphrepresentationmethods,abstractionmodels,orasetofprimitiveoperationsfurtherpreventsaunityofefforttowardacceleratinggraphprocessingacrossallgraphtasks.
5
Evaluation:
'Racing'systemsorinvasive
analysis?
user:
Realworld:
GraphAl
Graph:
If,HOW,when&constraints?
EffectivenessorEfficiency?
Figure1.2:GraphAIchallengesareahierarchyofdependenciesfoundationallylimitedbygraphprocessing.
1.3DevelopingtheGraphAIBenchmarkFrameworkandGraphAIBenchmarkMethod-
ology.
WeaddresstheseGraphAIissuesbycontributingourGraphAIbenchmarkframework,showninFigure
1.5.
ThebenchmarkevaluatestheperformanceofaSUTusinganInput/OutputobservationapparatustoprovidetheSUTwithproblem-centrictasksanddata,recordthetimetosolution,andverifythecorrectnessofananswer.EachGraphAIbenchmarkintheframeworkisindependent,andwecontributeanempiricalmethodologyforconstructingaproblem-centric,accelerator-agnostic,‘grey-box’GraphAIbenchmarkthatcanevaluateboththeefficiencyandtheeffectivenessofdynamicandstaticGraphAIimplementationsandsystems.
By‘grey-box’,wemeananapproachtobenchmarkingbetweenthefullyopaqueblack-box
6
GREYBOX
-Inputsknown&designedtostimulatebottlenecks.
-systemdetailunknown.-Implementationunknown.
-outputsevaluatedand
analyzedtoinfersystemandimplementationdetail.
WHITEBOX-Inputsknown.
-systemdetailknownandinstrumented.
-Implementationknownandinstrumented.
-outputsrarelyevaluated.
Figure1.3:TheGraphAIbenchmarkframeworktakesagrey-boxapproachtobenchmarking,
designinginputstostimulateobservablechangestooutputstoinfersystemandimplementationdetail.
Datasets
Tasks
Metrics
observationApparatus
Hardware
softwarestack
Implementation
Figure1.4:TheGraphAIbenchmarkdesignmethodologyforcreatingproblem-centricbench-
marks,showinghowmethodologyoutputsmaptobenchmarkcomponents.
7
viewthatnaivelyracessystemsagainsteachotherandtheinvasivewhite-boxviewthatpainstak-inglymonitorstheinternalstateofasystem(Figure
1.3
).Inimplementingagrey-boxview,weuseourGraphAIbenchmarkdesignmethodologytoidentifyexpectedsystemandimplementa-tionbottlenecksanddesignadversarialinputsthatweexpecttostimulatethosebottlenecks.Byevaluatingtheoutputandanalyzingtheefficiencyandeffectivenessacrossdatasets,wecaninferwhichexpectedbottleneckwilllikelycauseanobservedoutputwithoutinvasiveinstrumentation.
Thisapproachofmanipulatinginputstotriggerbottlenecksobservableintheoutputsallowsustoturnoneofthemostsignificantproblemsingraphprocessing(datadependence)intoavaluableasset.
Weemployaformalmethod(Figure
1.4
)thatemphasizesthetransparency,verifiability,andreproducibilityofbenchmarkproblems.Atitscore,themethodconstructsadetailedmap-pingofthecharacteristicsoftheinputgraphstotheoutputsofaGraphAIsystemanddetailshowtointerpretthoseoutputsinthecontextofknownandsuspectedbottlenecksinhardware,representation,andimplementationdecisions.Themethodcomprisessixstepsthatgeneratethecomponentsofthebenchmarkspecificationandtheobservationapparatus.
Theprocessbeginsbyidentifyingausecasetogroundtheprobleminreal-worlddatasetsandcurrentapproaches.Amoredetailedanalysisoftheproblemyieldsinformationaboutthesizeandshapeofthedataandformallyspecifiestheeverydaytasksassociatedwiththatprob-leminnaturallanguage.Formalizingthestudy’sphenomenaincludesidentifyingwhatspecificinteractionsofdatasetandtaskar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技发展与学科教育的互促关系研究
- 科技教育编程教育的普及与推广
- DB4453T 30-2025广藿香组培苗生产技术规程
- DB35T 2232-2024海峡两岸共通 火龙果生产技术规程
- 东莞企业劳动合同范本
- 个人贷款房屋抵押合同模板大全
- 业务经营权转让合同
- 个人车位共有权买卖合同
- 临时仓储合同范本
- 两人股权转让合同范本
- IEC-62368-1-差异分享解读
- 如何当好学校的中层干部
- SWITCH塞尔达传说旷野之息-1.6金手指127项修改使用说明教程
- 2022-2023学年广东省佛山市顺德区高三(下)模拟英语试卷
- 节后复工培训内容五篇
- GB/T 33322-2016橡胶增塑剂芳香基矿物油
- GA 1051-2013枪支弹药专用保险柜
- 某水毁公路维修工程施工方案
- 家庭病房工作制度和人员职责
- 建设工程监理合同示范文本GF-2018-0202
- 2022质检年终工作总结5篇
评论
0/150
提交评论