2025年人教五四新版高一数学下册月考试卷含答案_第1页
2025年人教五四新版高一数学下册月考试卷含答案_第2页
2025年人教五四新版高一数学下册月考试卷含答案_第3页
2025年人教五四新版高一数学下册月考试卷含答案_第4页
2025年人教五四新版高一数学下册月考试卷含答案_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教五四新版高一数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、直线与圆的位置关系是()

A.相离B.相切C.相交过圆心D.相交不过圆心2、【题文】已知函数是定义在上的奇函数,若对于任意的实数都有且当时,则的值为()A.B.C.D.3、【题文】设是轴上的两点,点的横坐标为2,且若直线的方程为则直线的方程是()A.B.C.D.4、在平行四边形ABCD中,点E为CD中点,==则等于()A.--B.-+C.-D.+5、在三角形ABC

中,已知A=60鈭�b=1

其面积为3

则a+b+csinA+sinB+sinc

为(

)

A.33

B.392

C.2633

D.2393

评卷人得分二、填空题(共7题,共14分)6、已知函数为奇函数,且当时则当时,的解析式为.7、已知关于x的不等式则该不等式的解集为____.8、【题文】“a=1”是“函数f(x)=在其定义域上为奇函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)9、【题文】已知函数若存在实数使的定义域为时,值域为则实数的取值范围是____.10、【题文】函数由下表定义:

2

5

3

1

4

1

2

3

4

5

若则.11、【题文】函数的值域是______________.12、【题文】如图,分别为正方体的面面的中心,则四边形在该正方体的面上的射影可能是____________。评卷人得分三、证明题(共9题,共18分)13、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.14、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.15、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.16、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.17、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.18、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.19、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.20、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.21、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、计算题(共1题,共9分)22、(2005•深圳校级自主招生)如图所示;MN表示深圳地铁二期的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500m为半径的圆形区域为居民区.取MN上的另一点B,测得BA的方向为南偏东75度.已知MB=400m.通过计算判断,如果不改变方向,地铁路线是否会穿过居民区,并说明理由.

(1.732)

解:地铁路线____(填“会”或“不会”)穿过居民区.评卷人得分五、解答题(共2题,共16分)23、已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上.

(1)求函数f(x);g(x)的解析式;

(2)作出这两个函数的草图;观察当x取何值时,f(x)>g(x).

24、【题文】如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=

(1)求证:AO⊥平面BCD;

(2)求E到平面ACD的距离;

(3)求异面直线AB与CD所成角的余弦值。评卷人得分六、综合题(共4题,共40分)25、如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A;B两点.

(1)求A;B,C三点的坐标;

(2)求经过A,B,C三点的抛物线的解析式.26、如图,直线y=-x+b与两坐标轴分别相交于A;B两点;以OB为直径作⊙C交AB于D,DC的延长线交x轴于E.

(1)写出A、B两点的坐标(用含b的代数式表示);并求tanA的值;

(2)如果AD=4,求b的值;

(3)求证:△EOD∽△EDA,并在(2)的情形下,求出点E的坐标.27、已知函数f(x)=ax2+4x+b,其中a<0,a、b是实数,设关于x的方程f(x)=0的两根为x1,x2;f(x)=x的两实根为α;β.

(1)若|α-β|=1,求a、b满足的关系式;

(2)若a、b均为负整数;且|α-β|=1,求f(x)解析式;

(3)试比较(x1+1)(x2+1)与7的大小.28、已知抛物线y=ax2-2ax+c-1的顶点在直线y=-上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α2+β2=10.

(1)求这个抛物线的解析式;

(2)设这个抛物线与y轴的交点为P;H是线段BC上的一个动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;

(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.参考答案一、选择题(共5题,共10分)1、D【分析】试题分析:将圆的方程变为标准方程为所以圆心为半径为4。因为圆心到直线的距离所以直线与圆相交。将圆心代入直线方程不成立,则说明直线不过圆心。故D正确。考点:点与线的位置关系,线与圆的位置关系。【解析】【答案】D2、A【分析】【解析】

试题分析:因为于任意的实数都有所以又因为当时,所以由于函数是定义在上的奇函数所以即所以则=-1.故选A.

考点:1.函数的周期性.2.函数的奇偶性.3.分段函数.【解析】【答案】A3、A【分析】【解析】

试题分析:因为是轴上的两点,点的横坐标为2,且所以与关于x=2对称,两直线倾斜角互补,斜率互为相反数,P(2,3),所以直线的方程是故选A。

考点:本题主要考查直线与直线的位置关系。

点评:简单题,由明确PA与AB的对称关系。【解析】【答案】A4、B【分析】【解答】由题意可得,

故选:B.

【分析】由条件利用两个向量的加减法的法则,以及其几何意义,求得5、D【分析】解:隆脽A=60鈭�b=1

其面积为3

隆脿12bcsinA=3

解得c=4

由余弦定理得,a2=b2+c2鈭�2bccosA

=1+16鈭�2隆脕1隆脕4隆脕12=13

则a=13

由正弦定理得;

a+b+csinA+sinB+sinc=asinA=1332

=2133=2393

故选D.

由题意和三角形的面积公式列出方程求出c

由条件和余弦定理求出a

由正弦定理求出a+b+csinA+sinB+sinc

的值.

本题考查正弦定理、余弦定理,以及三角形的面积公式,考查方程思想,化简、变形能力.【解析】D

二、填空题(共7题,共14分)6、略

【分析】试题分析:由已知,由则有又函数为奇函数,所以考点:函数的奇偶性.【解析】【答案】7、略

【分析】

不等式可化为

∴8-x2>-2x,化为x2-2x-8<0;即(x-4)(x+2)<0;

解得-2<x<4.

∴该不等式的解集为{x|-2<x<4}.

故答案为{x|-2<x<4}.

【解析】【答案】利用指数函数的单调性和一元二次不等式的解法即可得出.

8、略

【分析】【解析】根据奇函数的定义求出a的值,再判断充分条件、必要条件.由函数f(x)=是定义域上的奇函数,所以f(-x)==-f(x)=-对定义域上的每个x恒成立,解得a2=1,即a=1或a=-1,所以“a=1”是“函数f(x)=在其定义域上为奇函数”的充分不必要条件.【解析】【答案】充分不必要9、略

【分析】【解析】因为函数若存在实数使的定义域为时,值域为而函数f(x)是递增函数,那么可知根据函数与方程的思想得到参数m的范围是【解析】【答案】10、略

【分析】【解析】略【解析】【答案】411、略

【分析】【解析】略【解析】【答案】12、略

【分析】【解析】在平面ABCD和上的射影为平行四边形;在上的射影是线段。【解析】【答案】平行四边形或线段。

三、证明题(共9题,共18分)13、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.14、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.15、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.16、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=17、略

【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;

则AC=AE;AB=5DE;

又∵G是AB的中点;

∴AG=ED.

∴ED2=AF•AE;

∴5ED2=AF•AE;

∴AB•ED=AF•AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.18、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.19、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.20、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.21、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、计算题(共1题,共9分)22、略

【分析】【分析】问地铁路线是否会穿过居民区,其实就是求A到MN的距离是否大于圆形居民区的半径.如果大于则不会穿过,反正则会.如果过A作AC⊥MN于C,那么求AC的长就是解题关键.在直角三角形AMC和ABC中,AC为共有直角边,可用AC表示出MC和BC的长,然后根据MB的长度来确定AC的值.【解析】【解答】解:地铁路线不会穿过居民区.

理由:过A作AC⊥MN于C;设AC的长为xm;

∵∠AMN=30°;

∴AM=2xm,MC=m;

∵测得BA的方向为南偏东75°;

∴∠ABC=45°;

∴∠ABC=∠BAC=45°;

∴AC=BC=x;

∵MB=400m;

∴;

解得:(m)

≈546(m)>500(m)

∴不改变方向,地铁线路不会穿过居民区.五、解答题(共2题,共16分)23、略

【分析】

(1)设f(x)=xa,g(x)=xm

由点在幂函数f(x)的图象上,点在幂函数g(x)的图象上。

∴a=2,m=

∴(5分)

(2)结合函数的图象可知,函数有2个交点。

由可得x=0或x=1;即交点(0,0),(1,1)

结合函数图象可知;当x<0,或x>1时,f(x)>g(x)(10分)

【解析】【答案】(1)设f(x)=xa,g(x)=xm,由点在幂函数f(x)的图象上,点在幂函数g(x)的图象上;代入可求a,m从而可求f(x),g(x)

(2)结合函数的图象可求满足f(x)>g(x)时的x取值集合即可。

24、略

【分析】【解析】本题考查点;线、面间的距离的计算;考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题.

(1)连接OC,由BO=DO,AB=AD,知AO⊥BD,由BO=DO,BC=CD,知CO⊥BD.在△AOC中,由题设知AO=1,CO=3,AC=2,故AO2+CO2=AC2;由此能够证明AO⊥平面BCD.

(2)利用等体积法得到点到面的距离的求解。

(3)取AC的中点M;连接OM;ME、OE,由E为BC的中点,知ME∥AB,OE∥DC,故直线OE与EM所成的锐角就是异面直线AB与CD所成的角.在△OME中,EM=1能求出异面直线AB与CD所成角大小的余弦.

解:(1)证明:在三角形ABC中,因为O是BD中点;

所以AO⊥BD,且2分。

连结CO,在等边三角形BCD中易得

所以

所以AO⊥CO4分。

因为CO∩BD=O,CO、BD平面BCD

所以AO⊥平面BCD6分。

(3)分别取BC;AC的中点E、F;连结EF、EG

因为

所以∠FEO或其补角就是异面直线AB;CD所成的角8分。

连结FO;因为AO⊥平面BCD,所以AO⊥CO;

所以在Rt△ACO中,斜边AC上的中线

又因为

所以在△EFO中,

因为>0,所以异面直线AB、CD所成的角的余弦值是14分【解析】【答案】(1)见解析(2)略(3)六、综合题(共4题,共40分)25、略

【分析】【分析】(1)过C作CE⊥AB于E;根据抛物线的对称性知AE=BE;由于四边形ABCD是菱形,易证得Rt△OAD≌Rt△EBC,则OA=AE=BE,可设菱形的边长为2m,则AE=BE=1m,在Rt△BCE中,根据勾股定理即可求出m的值,由此可确定A;B、C三点的坐标;

(2)根据(1)题求得的三点坐标,用待定系数法即可求出抛物线的解析式.【解析】【解答】解:(1)由抛物线的对称性可知AE=BE.

∴△AOD≌△BEC.

∴OA=EB=EA.

设菱形的边长为2m;在Rt△AOD中;

m2+()2=(2m)2;解得m=1.

∴DC=2;OA=1,OB=3.

∴A,B,C三点的坐标分别为(1,0),(3,0),(2,).

(2)解法一:设抛物线的解析式为y=a(x-2)2+,代入A的坐标(1,0),得a=-.

∴抛物线的解析式为y=-(x-2)2+.

解法二:设这个抛物线的解析式为y=ax2+bx+c,由已知抛物线经过A(1,0),B(3,0),C(2,)三点;

得解这个方程组,得

∴抛物线的解析式为y=-x2+4x-3.26、略

【分析】【分析】(1)在解析式中分别令x=0与y=0;即可求得直线与y轴,x轴的交点坐标,即可求得OA,OB的长度,进而求得正切值;

(2)利用切割线定理,可以得到OA2=AD•AB,据此即可得到一个关于b的方程,从而求得b的值;

(3)利用两角对应相等的两个三角形相似即可证得两个三角形相似.【解析】【解答】解:(1)∵当x=0时,y=b,当y=0时,x=2b;

∴A(2b,0),B(0,b)

∴tanA===;

(2)AB===b

由OA2=AD•AB,得(2b)2=4•b,解得b=5;

(3)∵OB是直径;

∴∠BDO=90°;

则∠ODA=90°

∴∠EOC=∠ODA=90°;

又∵OC=CD

∴∠COD=∠CDO

∴∠COD+∠EOC=∠CDO+∠ODA

∴∠EOD=∠EDA

又∵∠DEA=∠OED

∴△EOD∽△EDA

D点作y轴的垂线交y轴于H;DF⊥AE与F.

∵A(2b,0),B(0,b)

∴OA=10;OB=5.

∴AB=5;

∵DF∥OB

∴===;

∴AF=OA=8;

∴OF=OA-AF=10-8=2;

∴DH=OF=2;

∵Rt△BHD中,BD2=BH2+HD2

∴BH==1;

∴CH=-1=;

∵DH∥OE;

∴=

∴OE=.

∴E的坐标是:(-,0).27、略

【分析】【分析】(1)根据f(x)=x的两实根为α、β,可列出方程用a,b表示两根α,β,根据|α-β|=1,可求出a、b满足的关系式.

(2)根据(1)求出的结果和a、b均为负整数,且|α-β|=1,可求出a,b;从而求出f(x)解析式.

(3)因为关于x的方程f(x)=0的两根为x1,x2,用a和b表示出(x1+1)(x2+1),讨论a,b的关系可比较(x1+1)(x2+1)与7的大小的结论.【解析】【解答】解:(1)∵f(x)=x;

∴ax2+4x+b=x;

α=,β=.

∵|α-β|=1;

∴=|a|;

∴a2+4ab-9=0;

(2)∵a、b均为负整数,a2+4ab-9=0;

∴a(a+4b)=9,解得a=-1,b=-2.

∴f(x)=-x2+4x-2.

(3)∵关于x的方程f(x)=0的两根为x1,x2;

∴ax2+4x+b=0

∴x1x2=,x1+x2=-.

∴(x1+1)(x2+1)=x1x2+x1+x2+1=-+1.

-+1-7=;

∵a<0;

当b>6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论