




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年统编版高一数学上册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、则的取值范围是()A.B.C.D.2、【题文】函数y=(a2-3a+3)ax是指数函数,则有A.a=1或a=2B.a=1C.a=2D.a>0且a≠13、关于函数f(x)=tan(cosx),下列判断正确的是()A.定义域是[﹣1,1]B.是奇函数C.值域是[﹣tan1,tan1]D.在(﹣)上单调递减4、函数的图像的一条对称轴方程是()A.B.C.D.5、已知平面α,β和直线a,b,若α∩β=l,a⊂α,b⊂β,且平面与平面β不垂直,直线a与直线l不垂直,直线b与直线l不垂直,则()A.直线a与直线b可能垂直,但不可能平行B.直线a与直线b可能垂直,也可能平行C.直线a与直线b不可能垂直,但可能平行D.直线a与直线b不可能垂直,也不可能平行评卷人得分二、填空题(共5题,共10分)6、已知函数如果则的取值范围是____.7、如图所示,用一根长为4米的木料制成窗框,设窗框的宽为x米,长为y米(y>x).若不计木料的厚度与损耗,则将窗的面积S表示成宽x的函数S(x)为____.
8、【题文】直线被圆所截得的弦长为____;9、已知数列253327543
则2119
是该数列中的第______项.
10、设Sn
是公差不为0
的等差数列{an}
的前n
项和,若a1a2a4
成等比数列,则S4S2
的值为______.评卷人得分三、证明题(共5题,共10分)11、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.12、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.13、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.14、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.15、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.评卷人得分四、计算题(共4题,共40分)16、方程x2-(m+2)x+m2=0的两实根之和与积相等,则实数m的值是____.17、如图,已知在△ABC中,若AC和BC边的长是关于x的方程x2-(AB+4)x+4AB+8=0的两个根,且25BC•sinA=9AB.求△ABC三边的长?18、关于x3-ax2-2ax+a2-1=0只有一个实数根,则a的取值范围是____.19、△ABC中,AB=AC=5厘米,BC=8厘米,⊙O分别切BC、AB、AC于D、E、F,那么⊙O半径为____厘米.评卷人得分五、综合题(共3题,共27分)20、取一张矩形的纸进行折叠;具体操作过程如下:
第一步:先把矩形ABCD对折;折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上;折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF;如图(3)所示;利用展开图(4)所示.
探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形;按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5);将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k(k<0)
①问:EF与抛物线y=有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求的值.21、如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A;B两点.
(1)求A;B,C三点的坐标;
(2)求经过A,B,C三点的抛物线的解析式.22、已知直线l1:x-y+2=0;l2:x+y-4=0,两条直线的交点为A,点B在l1上,点C在l2上,且,当B,C变化时,求过A,B,C三点的动圆形成的区域的面积大小为____.参考答案一、选择题(共5题,共10分)1、C【分析】【解析】试题分析:由题意∵∴∴∴∴即的取值范围是故选C考点:本题考查了三角函数的化简及正切函数图象的运用【解析】【答案】C2、C【分析】【解析】根据指数函数的概念得解得故选C【解析】【答案】C3、C【分析】【解答】解:函数f(x)=tan(cosx);
由于﹣1≤cosx≤1;函数有意义,则定义域为R,则A错;
由于[﹣1,1]⊆(﹣);
由正切函数的单调性;可得tan(﹣1)≤f(x)≤tan1;
即有值域为[﹣tan1;tan1],则C对;
由于定义域为R;则f(﹣x)=tan(cos(﹣x))=tan(cosx)=f(x);
即有f(x)为偶函数;则B错;
在(﹣0)上,y=cosx递增,则y=tan(cosx)递增;
则在(0,)上单调递减.则D错.
故选C.
【分析】运用正切函数的性质和余弦函数的性质,结合奇偶性的定义和复合函数的单调性,即可判断.4、A【分析】【解答】=由得,所以,函数的图像的一条对称轴方程是选A。
【分析】简单题,正弦函数图象的对称轴满足,是函数取到最大值或最小值。5、B【分析】解:因为平面与平面β不垂直,直线a与直线l不垂直,直线b与直线l不垂直;
所以①当a∥l;b∥l时,a∥b;②当a与b在α内的射影垂直时a与b垂直.
故选:B.
由平面与平面β不垂直,直线a与直线l不垂直,直线b与直线l不垂直分别分析当a∥l;b∥l和当a与b在α内的射影垂直时的a,b位置关系.
本题考查了两个平面相交时平面内直线的位置关系的判断;开心学生的空间想象能力.【解析】【答案】B二、填空题(共5题,共10分)6、略
【分析】【解析】试题分析:∵函数在上为单调递增的奇函数,∴化为∴∴∴的取值范围是考点:本题考查了函数性质的运用【解析】【答案】7、略
【分析】
要将窗的面积S表示成宽x的函数;
在这个窗户中有四个窗棂是宽;三个长度是长;
∴当宽是x时,长是
∴s=
∵7x<4;
∴x<
故答案为:s=x
【解析】【答案】根据所给的图形;看出和宽一样长的有4个窗棂,和长一样长的有3个窗棂,表示出窗户的面积,写出自变量的定义域.
8、略
【分析】【解析】
试题分析:圆心到直线的距离为因为圆的半径为3,所以弦长为
考点:本小题主要考查弦长的求解.
点评:直线与圆相交时,圆心到直线的距离、半径和半弦长构成一个直角三角形,这个直角三角形应用十分广泛,要灵活应用.【解析】【答案】29、略
【分析】解:数列的等价条件为4253647586
则数列的通项公式为an=n+3n+1
由an=n+3n+1=2119
解得n=18
即则2119
是该数列中的第18
项;
故答案为:18
根据条件求出数列的通项公式即可得到结论.
本题主要考查数列的通项公式的求解,根据数列项的概率求出数列的通项公式是解决本题的关键.【解析】18
10、略
【分析】解:设等差数列{an}
的公差d鈮�0隆脽a1a2a4
成等比数列,隆脿a22=a1a4
可得(a1+d)2=1(a1+3d)d鈮�0
.
化为:d=a1鈮�0
隆脿S4S2=4d+4隆脕32d2d+d=103
.
故答案为:103
.
设等差数列{an}
的公差d鈮�0
由a1a2a4
成等比数列,可得a22=a1a4
可得(a1+d)2=1(a1+3d)d鈮�0
化为:d=a1鈮�0
再利用求和公式即可得出.
本题考查了等差数列通项公式与求和公式、方程的解法,考查了推理能力与计算能力,属于中档题.【解析】103
三、证明题(共5题,共10分)11、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.12、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.13、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.14、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.15、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.四、计算题(共4题,共40分)16、略
【分析】【分析】设α、β是方程x2-(m+2)x+m2=0的两实根,再由根与系数的关系,可得出m的值.【解析】【解答】解:设α、β是方程x2-(m+2)x+m2=0的两实根;
∴α+β=m+2,αβ=m2;
∵方程x2-(m+2)x+m2=0的两实根之和与积相等;
∴m+2=m2;
解得m=2或-1;
∵方程x2-(m+2)x+m2=0有两实根;
当m=2时;
∴△=(m+2)2-4m2=-3m2+4m+4=0;
当m=-1时;
∴△=(m+2)2-4m2=-3m2+4m+4<0;(不合题意舍去);
∴m=2.
故答案为2.17、略
【分析】【分析】首先由根与系数的关系可以得到AC+BC=AB+4(1),AC•BC=4AB+8(2),然后由(1)2-2(2)得AC2+BC2=AB2;
然后利用勾股定理的逆定理即可判定△ABC是直角三角形,且∠C=90°,接着利用三角函数可以得到=sinA;
由25BC•sinA=9AB可以得到sinA•=,然后就可以求出sinA=,也就求出=,设BC=3k,AB=5k,由勾股定理得AC=4k,这样利用(1)即可解决问题.【解析】【解答】解:依题意得:AC+BC=AB+4(1)
AC•BC=4AB+8(2);
由(1)2-2(2)得:AC2+BC2=AB2;
∴△ABC是直角三角形;且∠C=90°;
在Rt△ABC中,=sinA;
由题意得:sinA•=;
∵∠A是Rt△ABC的锐角;
∴sinA>0;
∴sinA=;
∴=;
设BC=3k;AB=5k,由勾股定理得AC=4k;
结合(1)式得4k+3k=5k+4;解之得:k=2.
∴BC=6,AB=10,AC=8.18、略
【分析】【分析】先把方程变形为关于a的一元二次方程的一般形式:a2-(x2+2x)a+x3-1=0,然后利用求根公式解得a=x-1或a=x2+x+1;于是有
x=a+1或x2+x+1-a=0,再利用原方程只有一个实数根,确定方程x2+x+1-a=0没有实数根,即△<0,最后解a的不等式得到a的取值范围.【解析】【解答】解:把方程变形为关于a的一元二次方程的一般形式:a2-(x2+2x)a+x3-1=0;
则△=(x2+2x)2-4(x3-1)=(x2+2)2;
∴a=,即a=x-1或a=x2+x+1.
所以有:x=a+1或x2+x+1-a=0.
∵关于x3-ax2-2ax+a2-1=0只有一个实数根;
∴方程x2+x+1-a=0没有实数根;即△<0;
∴1-4(1-a)<0,解得a<.
所以a的取值范围是a<.
故答案为a<.19、略
【分析】【分析】设圆O的半径是r厘米,连接AO、OE、OF、OD、OB、0C,根据等腰三角形性质求出AD⊥BC,根据勾股定理求出高AD,求出△ABC面积,根据S△ABC=S△ABO+S△BCO+S△ACO和三角形面积公式代入求出即可.【解析】【解答】解:设圆O的半径是r厘米;
连接AO;OE、OF、OD、OB、0C;
则OE=OF=OD=r厘米;
∵△ABC中;AB=AC,⊙O分别切BC;AB、AC于D、E、F;
∴AD过O;AD⊥BC,OE⊥AB,OF⊥AC;
∴BD=DC=×8=4;
根据勾股定理得:AD==3;
∴S△ACB=BC×AD=×8×3=12;
∵S△ABC=S△ABO+S△BCO+S△ACO;
∴12=BCr+ABr+ACr;
∴r=;
故答案为:.五、综合题(共3题,共27分)20、略
【分析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半;以及矩形性质得出∠AEF=60°,∠EAF=60°,即可得出答案;
(2)根据矩形的长为a,宽为b,可知时,一定能折出等边三角形,当<b<a时;不能折出;
(3)①由已知得出得到x2+8kx-8k=0,△=(8k)2+32k=32k(2k+1);再分析k即可得出答案;
②得出Rt△EMO∽Rt△A′AD,进而得出,即可求出答案.【解析】【解答】解:(1)△AEF是等边三角形
证明:∵PE=PA;
B′P是RT△AB′E斜边上的中线
∴PA=B′P;
∴∠EAB′=∠PB′A;
又∵PN∥AD;
∴∠B′AD=∠PB′A;
又∵2∠EAB′+∠B′AD=90°;
∴∠EAB′=∠B′AD=30°;
易证∠AEF=60°;∴∠EAF=60°;
∴△AEF是等边三角形;
(2)不一定;
设矩形的长为a,宽为b,可知时;一定能折出等边三角形;
当<b<a时;不能折出;
(3)①由;
得x2+8kx-8k=0,△=(8k)2+32k=32k(2k+1);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药物相互作用案例分析试题及答案
- 傅秦生考试题及答案
- 汽车智能系统维护基础试题及答案
- 2024年统计学考试重点考查题目及答案
- 汽车维修工消防安全知识及技能试题及答案
- 幼儿园保育教师培训内容
- 2024年敏感肌肤护理试题及答案
- 统计学考试结构性问题剖析试题及答案
- 美容师职场转型的机会与挑战及试题及答案
- 河北省张家口市桥西区2023-2024学年八年级下学期期中考试英语试题(含答案)
- GB/T 13384-2008机电产品包装通用技术条件
- 新教科版五年级下册科学期中测试卷(含答案)
- 员工培训请给我结果课件
- 2022年4月自考质量管理(一)试题及答案含评分标准
- 人教精通版五年级下英语unit 4 Revision优秀课件
- 思修坚定理想信念宣讲教育课件
- 两台37kW三相交流电动机的动力配电柜设计
- 拖欠房租起诉书【5篇】
- 医院临时用药申请表
- 农民合作社财务报表(专业应用)
- T∕CIS 71001-2021 化工安全仪表系统安全要求规格书编制导则
评论
0/150
提交评论