![生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第1页](http://file4.renrendoc.com/view15/M02/2C/1A/wKhkGWeZ5VqAZKpNAAOgAvyM7Fs412.jpg)
![生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第2页](http://file4.renrendoc.com/view15/M02/2C/1A/wKhkGWeZ5VqAZKpNAAOgAvyM7Fs4122.jpg)
![生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第3页](http://file4.renrendoc.com/view15/M02/2C/1A/wKhkGWeZ5VqAZKpNAAOgAvyM7Fs4123.jpg)
![生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第4页](http://file4.renrendoc.com/view15/M02/2C/1A/wKhkGWeZ5VqAZKpNAAOgAvyM7Fs4124.jpg)
![生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第5页](http://file4.renrendoc.com/view15/M02/2C/1A/wKhkGWeZ5VqAZKpNAAOgAvyM7Fs4125.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Received:29February2024
Accepted:2July2024
DOI:
10.1002/qub2.75
REVIEWARTICLE
QuantitativeBiology
openAccess
Stochasticthermodynamicsforbiologicalfunctions
YuanshengCao
1
|
ShilingLiang
2
1DepartmentofPhysics,TsinghuaUniversity,Beijing,China
2InstituteofPhysics,SchoolofBasicSciences,ÉcolePolytechniqueFédéraledeLausanne
(EPFL),Lausanne,Switzerland
Correspondence
YuanshengCaoandShilingLiang.Email:
yscao@
and
shiling.liang@epfl.ch
Fundinginformation
NationalNaturalScienceFoundationofChina,Grant/AwardNumber:12374213;
SchweizerischerNationalfondszurFörderungderWissenschaftlichenForschung,Grant/
AwardNumber:200020_178763
Abstract
Livingsystemsoperatewithinphysicalconstraintsimposedbynonequilib-riumthermodynamics.Thisreviewexploresrecentadvancementsinapplyingtheseprinciplestounderstandthefundamentallimitsofbiologicalfunctions.Weintroducetheframeworkofstochasticthermodynamicsanditsrecentdevelopments,followedbyitsapplicationtovariousbiologicalsystems.Weemphasizetheinterconnectednessofkineticsandenergeticswithinthisframework,focusingonhownetworktopology,kinetics,andenergeticsinfluencefunctionsinthermodynamicallyconsistentmodels.Wediscussexamplesintheareasofmolecularmachine,errorcorrection,biologicalsensing,andcollectivebehaviors.Thisreviewaimstobridgephysicsandbiologybyfosteringaquantitativeunderstandingofbiologicalfunctions.
KEYWORDS
biologicalfunctions,physicalconstraints,stochasticthermodynamics
1|INTRODUCTION
Physicsandbiology,whilesharingacommongoalofunderstandingthenaturalworld,employdistinctpara-digmsandterminologiestoachievethisobjective.Physicsstrivestoidentifyfundamental,universallawsgoverningthebehaviorofmatterandenergy,oftenexpressedusingconceptssuchasenergy,entropy,forces,andrates.Incontrast,biologydelvesintotheintricatecomplexitiesoflife,focusingonthestructures,functions,andinformationflowwithinlivingsystems,oftenutilizingtermssuchassignals,codes,transcrip-tion,andtranslation.
Modernbiologicalphysics,orthephysicsoflivingsystems,bridgesthedisciplinarygapbyapplyingtheprinciplesandmethodologiesofphysicstoelucidatebiologicalphenomena.Acentralfocusofthisinterdis-ciplinaryfieldistheinvestigationofbiologicalfunctions.Fromthemolecularmachinerywithinacelltothebiomechanicsoforganismalmovement,biological
physicsseekstounraveltheunderlyingphysicalprin-ciplesgoverningtheseprocesses.
Thefunctionalityoflivingsystemsisconstrainedbythefundamentallawsofphysics,chemistry,andbiology.Withinsignalingnetworks,forexample,re-ceptorspecificityensuresthattheyonlyrespondtospecificligands.Thisbiochemicalspecificityarisesfromthemolecularstructuresshapedbyevolution.However,aswillbedetailedlater,thefundamentallimitationsgoverningmanybiologicalfunctionsstemnotonlyfrombiologicalandchemicalfactorsbutalsofromthebasicphysicalprinciplesgoverningcellularprocessesandtheirenvironment.
Amongtherelevantsubfieldsofphysics,thermo-dynamicsprovidessomeofthemostuniversalcon-straintsonbiologicalsystems.Forinstance,theconservationofenergy(thefirstlawofthermody-namics)andmateriallimitstheyieldofcellularmeta-bolism[
1,2
].Thesecondlawofthermodynamics,whichstatesthatisolatedsystemstendtoward
Thisisanopenaccessarticleunderthetermsofthe
CreativeCommonsAttribution
License,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.
©2024TheAuthor(s).QuantitativeBiologypublishedbyJohnWiley&SonsAustralia,LtdonbehalfofHigherEducationPress.
QuantitativeBiology.2025;e75.
/10.1002/qub2.75
-
/journal/qb
1of19
20954697,
2of19
■
CAOandLIANG
maximumdisorder(andthereforeincompatiblewithlife),haslongchallengedphysicistsseekingtounder-standhowlivingsystemsmaintaintheirorderedstate.ErwinSchrödinger,inhisinfluentialbookWhatisLife?,assertedthatlivingcellsmustabsorb“negativeen-tropy”or“freeenergy”asitistermedinstandardther-modynamics,tocounterbalancetheentropyproducedwithinbiologicalprocessesandmaintaintheirlow-entropy(highlyordered)states.Thermodynamically,akeydistinctionbetweenacellandaboxofgasisthatacellrepresentsanopensystem,continuouslyexchangingenergywithitssurroundingstoremaininastateofdynamicorder.
Traditionalequilibriumthermodynamicsoffersawell-suitedframeworkfordescribingaboxofgasmol-ecules.However,duetotheircontinuousexchangeoffreeenergywiththeenvironment,cellsareinherentlynonequilibriumsystems.Notably,acentralthemeofthisreviewisthatthecostoffreeenergyimposesfundamentallimitsontheperformanceofbiologicalfunctions.Furthermore,cellularsystemsoftenoperateatthemicroscopicormesoscopicscale,wherethenumberofparticipatingmolecules,typicallyrangingfrom10to105,fallswellbelowthethermodynamiclimitof1023particles.Thischaracteristicclassifiesatypicalcellasamicroscopicormesoscopicnonequilibriumsystem.Consequently,theperformanceofbiologicalfunctionsisalsoinherentlylimitedbytheinevitablefluctuationsarisingfromthesmallnumberofmoleculesinvolved.
Recentadvancesinstochasticthermodynamicsprovideapowerfultooltoaddressthetwofeatureslistedabove.Stochasticthermodynamicsinvestigatesthebehaviorofmesoscopicsystemsgovernedbythermalfluctuations,bothinandoutofequilibrium,establishingafundamentalrelationshipbetweenther-modynamicprinciplesandstochastickinetics.ThisfieldtracesitsrootstoEinstein’sseminalworkonBrownianmotion,inwhichheestablishedthefluctuation–dissipationtheorem(FDT),revealingaprofoundconnectionbetweenfluctuationanddissipationatthermodynamicequilibrium.Forsystemsoutofequi-librium(suchasaBrownianparticlecoupledtomultiplethermalreservoirsorsubjectedtotime-dependentenvironmentalchanges),abroaderthermodynamicframeworkisnecessary,particularlyforunderstandinginherentlynonequilibriumbiologicalprocessesatthesubcellularlevel.Fromthelatterhalfofthe20thcen-tury,significanteffortsweremadetoconnecttheirre-versibledynamicsofstochasticprocesseswithentropyproduction[
3–5
],leadingtoacomprehensiveframe-workwithprecisedefinitionsofthermodynamicquanti-tieslikeworkandheatatthemesoscopiclevel[
6
].Buildinguponthisframework,researchershaveappliedadvancedmathematicalandphysicaltoolstoinvesti-gatefundamentalthermodynamicconstraints,resultinginkeyfindingssuchasthefluctuationtheoremwhich
2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
quantifiestheirreversibilityofmesoscopicsystems[
7–
9
],thethermodynamicuncertaintyrelation(TUR)whichidentifiesthethermodynamiccostofsuppressingcur-rentfluctuations[
10
],andnonequilibriumresponseboundsdemonstratinguniversalconstraintsonthesensitivityofnonequilibriumresponse[
11
].Thesead-vancesinstochasticthermodynamicsilluminatethethermodynamicprinciplesgoverningmesoscopicsto-chasticsystemsandsetphysicalconstraintsonmesoscopicbiologicalprocesses.
Thisreviewdelvesintorecentadvancementsinunderstandingthephysicallimitations,particularlyfromanonequilibriumthermodynamicsperspective,ontheperformanceofvariousbiologicalfunctions.Webeginbyintroducingthefundamentalframeworkandrecentdevelopmentsinstochasticthermodynamics.Subse-quently,weshowcaseadvancementsinapplyingtheseprinciplestodiversebiologicalsystems.Recognizingthedeepconnectionbetweenkineticsandenergeticsinstochasticthermodynamics(e.g.,localdetailedbalance[LDB]),thereviewspecificallyfocusesonstudiesthatelucidatehowkinetics,energetics,andnetworktopol-ogydeterminebiologicalfunctionwithinthermody-namicallyconsistentmodels.Threekeyquestionswillbeaddressedanddiscussed:(1)howtodefineaspe-cificbiologicalfunctionwithinthecontextofbiologicalnetworksandthermodynamics,(2)howstochasticthermodynamics,particularlyfreeenergydissipation(orentropyproduction),imposesconstraintsonbiologicalfunctionality,and(3)howtoapproachtheselimitationsandoptimizeperformance.Thesekeyaspectswillbeexaminedwithspecificexamplesinvariousareas,includingtheprecisionofmolecularmachines,errorcorrectionmechanisms,biologicalsensing,andtheemergenceofcollectivebehaviors.Thisreviewaimstobridgethegapbetweenphysicsandbiology,fosteringaquantitativeunderstandingofbiologicalfunctions.
2|INTRODUCTIONTOSTOCHASTICTHERMODYNAMICS
2.1|Thermodynamicsofstochasticprocesses
Manybiologicalprocesses,suchasmolecularmotormotion,transcription,andproteinfolding,canbemodeledasMarkoviandynamicswherethermalnoisetriggerstransitionsbetweenmesoscopicstates[
12–
15
].Stochasticthermodynamicsoffersacomprehen-siveframeworkfordescribingthethermodynamicsofstochasticprocessesbyestablishingconstraintsonki-netics.Consequently,itenablesprecisedefinitionsofthermodynamicquantities,suchasentropyproduction,atbothtrajectoryandensemblelevels[
16–18
].Thisframeworkfurtherallowsforthederivationofthermo-dynamicconstraintsonvariousphysicalobservables,
20954697,2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
■
3of19
STOCHASTICTHERMODYNAMICSFORBIOLOGICALFUNCTIONS
illustratinghowphysicallawslimitbiologicalfunctions.Here,wewillintroducethebasicframeworkofsto-chasticthermodynamicsandhighlightseveralrecentadvancesinthisfield.
2.1.1|Masterequation
Adiscrete‐statestochasticprocessisgovernedbyamasterequationthatdescribesthetimeevolutionoftheoccupationprobabilitiesofstates:
p(t)=Wp(t);(1)
wherep(t)=[p1(t),p2(t),…,pn(t)]representsthevectorofprobabilitydistributionacrossallstatesinthesystemattimet.Here,Wisthetransitionratematrix,withitselementWijindicatingthetransitionratefromstatejtostatei.Thetimeevolutionoftheprobabilityforstateicanbederivedfromtheequationasfollows:
dX
dtpi=j≠i(Wijpj−Wjipi);(2)
whereJij=Wijpjrepresentstheprobabilitycurrentfromstatejtostatei,contributedbyalltransitioneventsalongtheedgeeijfromjtoi.ThenetcurrentfromstatejtostateiisJij=Jij−Jji.Inthelongtimelimit,thesystemreachesastationarystate,denotedbypst,inwhichall
netcurrentsarebalanced,suchthatΣj≠iJt=0forany
iorinmatrixproductformWpst=0.Ifallnetcurrents
arezero,thatis,Jt=0forallpairsi,j,thesteadystate
isanequilibriumstate.
Thesteady‐stateprobabilitydistributioncanbederivedusingagraph‐theoreticapproach,expressedasfollows:
(3)
p=;
whereTiisadirectedspanningtreerootedatstatei,andw(Ti)istheweightofthedirectedtreeTi,calcu-latedastheproductofthetransitionratesalongtheedgesofthetree.Figure
1
illustratesthespanningtreerepresentationofthesteady‐stateprobabilitydistribu-tionfora3‐statesystem.
Thisgraph‐theoreticsolutionhasbeendiscoveredseveraltimesthroughouthistory[
19–21
].Itcircumventsthedirectcomputationofmatrixinversionsandfacili-tatestheoreticalanalysisbasedonthegraph‐theoreticpropertiesofthenetwork.Thisanalysisservesasafoundationalelementforexploringthethermodynamicsofstochasticprocesses.Suchexplorationshaveledtonumerousresults,includingcycle‐decompositionofentropyproduction[
20
],boundsonnonequilibrium
responses[
11,22
],constraintsonsymmetrybreakinginbiochemicalsystem[
23
],andthedevelopmentofthespanning‐treerepresentationforfirstpassagetimesstatisticsinMarkovchains[
21,24
].
2.1.2|Localdetailedbalance
Forsmallsystems,theprincipleofmicroscopicreversibilitymandatesthatforanytransition,anasso-ciatedbackwardtransitionmustexist.Inasystemgovernedbythemasterequation,thermodynamicsisintroducedoneverypairoftransitionratesthroughtheLDBcondition
[18,25
],
=eΔSnv/kB;(4)
wherekBistheBoltzmannconstantandΔSnvrepre-
sentstheentropyproductionintotheenvironmentforthetransitionj→i.Theentropyproductionintotheenvironmentisdeterminedbytheenergyexchangebetweenthesystemanditsenvironment,incorporatingtwocontributions:theenergydifferencebetweenthetwostates,∈j−∈i,andthedrivingforceFij,
ΔSnv=(∈j−∈i)/T+Fij;(5)
whereTisthetemperatureoftheenvironment.Theentropyproductionquantifiestheirreversibilityofatransition—iftheentropyproductionispositive(i.e.thetransitionfromstatejtostateiincreasestheentropyoftheenvironment),thenWij>Wji,indicatingapreferencefortheforwardtransitionoverthebackwardone.Thelocalthermodynamicdefinitionoftransitionratesallowsustoassesswhetherasystemisinoroutofequilibriumonagloballevel.Onecancalculatethenonequilibriumdrivingforcealongacyclec=[m0,m1,m2,…,mn,m0]inthenetwork,
,、
Fc=ln;(6)
referredtoascycleaffinity,orcyclicdrivingforce.WhenFc≠0,thetime‐reversalsymmetryisbroken,indicatingthesystemisoutofequilibrium—astraversingacycleresultsinnonzeroentropyproduction.Conversely,ifFc=0forallcyclesinthenetwork,knownasKolmo-gorov’scriterion[
26
],thesystemisanequilibriumsystemandpreservestime‐reversalsymmetry.Theequilibriumnatureofasystemallowstheconstructionofanenergylandscapeinwhichtheentropyproductionofatransitionissolelydeterminedbytheenergydif-ferencebetweentheinitialandfinalstates,thatis,
ΔSnv=(∈j−∈i)/T.Consequently,theLDBcondition
reducestothedetailedbalancecondition
20954697,2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
4of19
■
CAOandLIANG
FIGURE1Graph‐theoreticsolutionforMarkovchain.(A)Athree‐stateMarkovchain.(B)Thegraph‐theoreticsolutionofstationarystate
probability.
==e−β(∈i−∈j);(7)
foranypairofstates,whereβ=1/(kBT)istheinversetemperature.DetailedbalanceensuresthesystemcanrelaxtoanequilibriumBoltzmanndistribution,
pieq=;(8)
wherethesummationinthedenominatorisoverallstates.Withdetailedbalance,thegraph‐theoreticalsolution,Equation(
3
),canbereducedtotheBoltz-manndistribution.
2.1.3|Entropyproductionrate
TheLDBconditionlinksthekineticsofaMarkovpro-cesswithitsthermodynamicproperties.Beyondtheentropyproductionofindividualtransitions,itispossibletodefinetheentropyproductionrate(EPR)attheensemblelevel,whichquantifiestheaveragerateofentropyproductionacrosstheentiresystem.DenotingtheEPRasΣ.,itcanbeexpressedasfollows:
Σ.tot=kB←JijlnJij
i;j>iJji
=kB←JijlnWij+kB←Jijlnpj.(9)
i;j>iWjiij>ipi
、 、尺----------√、-----;----、尺---------√
environmentEPR;Σ.envsystemEPR;Σ.sys
ThetotalEPR,Σ.tot,canbedecomposedintotheenvironmentEPR,Σ.env,andthesystemEPR,Σ.sys.Notably,thesystemEPRequalsthetimederivativeofthesystem’sShannonentropy,Σ.sys=−kBΣipilnpi).
Atanonequilibriumstationarystate,theprobabilitydistributionremainsunchangedovertime,resultinginzerosystemEPR.ThesignofJij=Jij−Jjialwaysalignswiththatofln(Jij/Jji),ensuringthenon‐negativetotalEPR.Thispropertyisconsistentwiththesecondlawofthermodynamics,whichstatesthatthetotalentropyofanisolatedsystem(herethesystemandenvironmenttogetherconstituteanisolatedsystem)isanon‐decreasingfunction.
2.2|Stochastictrajectoriesand
fluctuationtheorems
Themasterequationprovidesadeterministicdescrip-tionofthetimeevolutionofprobabilitydistributionsinaMarkovchain,obtainedbyaveragingoverthemanypossiblestochastictrajectorieswhicharegeneratedbythetransitionratematrixW.Ontheotherhand,theMarkovchainitselfmodelstherandomtransitionsbe-tweenstates,capturingtheinherentfluctuationsatthelevelofindividualtrajectories.AsdepictedinFigure
2B
,astochastictrajectory(andthetime‐reversedtrajectoryinFigure
2C
)withinathree‐statenetworkprovidesavisualrepresentationoftheseconcepts.Understandingthethermodynamicpropertiesofstochastictrajectoriesandextractinginformationfromthemarecentralproblemsinstochasticthermodynamics.Toaddressthesechallenges,wefirstintroducetheprobabilityofastochastictrajectoryforageneraldiscrete‐statesto-chasticprocess.Inthemostgeneralcase,asystemcanbesubjectedtoexternalcontrol,λt,leadingtoatime‐dependenttransitionmatrix,Wλ(t).Astochastictrajectoryisasequenceofstates[γ0,γ1,…,γn]alongwiththecorrespondingtimesoftransitionevents[t0,t1,t2,…,tn,tn+1],wheret0=0andtn+1=τdenotetheinitialandfinaltimesofthetrajectory,respectively,andeachtirepresentsthetimeforthetransitionγi−1→γi.Theprobabilityofatrajectorycanbewrittenasfollows:
20954697,2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
■
5of19
STOCHASTICTHERMODYNAMICSFORBIOLOGICALFUNCTIONS
FIGURE2StochastictrajectoriesforaMarkovchain.(A)Athree‐stateMarkovchain.(B)Astochastictrajectoryonthethree‐state
network.Theprobabilityofatrajectorycontainsthecontributionfromtransitioneventsandthesurvivalprobabilityamongthestatesalongthetrajectory.(C)Thetime‐reversedtrajectory.
Wiγi(t)dt
n
Pγ=p(γ0;0)∏i=1
(10)
;
i=0
Wiγi−1(ti)e∫+1
wherep(γ0,0)istheprobabilityatstateγ0withthe
initialdistribution,Wiγi−1(ti)istheprobabilityoftransition
Wγiγi(λ(t))dt
isthesurvival
γi−1→γiattimeti,ande∫+1
probabilityonstateγibetweentheinandouttransitions.Denotingtheprobabilityofthereversedtra-jectoryγundertime‐reversedprotocolλ(t)=λ(tn+1−t)asPγ,onecanfindthattheratioofthesetwoprobabilitiesisdeterminedbythetotalentropyproductionalongthetrajectory[
27
].
Pγ;
Pγ=eΔSot/kB(11)
where,
ΔSot=kBln+kBln.(12)
Equation(
11
)quantifiestheirreversibilityontrajec-torylevel,andcanalsobeunderstoodasadirectconsequenceofLDBcondition[
25
].Byintegratingoveralltrajectorieswithequalentropyproduction,wecanfindthedetailedfluctuationtheorem[
28
].
,、
PΔStotΔStot
P−ΔStot
,、=ekB;(13)
whichstatesthattheprobabilityofobservationofen-tropyproductionofanamountΔStotiseΔStot/kbmorelikelythanobservingthesameamountofnegativeentropyproductionunderatime‐reversalcontrolpro-tocol.Thisisoneofthemostfundamentalrelationsin
stochasticthermodynamics.Byaveraginge−ΔSot/kB
overallpossibletrajectories,onecanobtaintheinte-gratedfluctuationtheorem,
e−kB=Pγe−kBdγ=Pγdγ=1.(14)
,ΔSot、ZΔSotZ
γγγ
Thefluctuationtheoremhasbeenfoundseveraltimesattheendofthelastcentury
[7,8,28
].ItsapplicabilityextendsbeyondMarkovianprocesses,encompassingdeterministicHamiltoniansystems[
29
]andquantumsystems[
30
].Forexample,Jarzynskiequalityasoneoftheveryfirstintegratedfluctuationtheorems[
8
]revealsarelationbetweenworkandfreeenergychangeinanonequilibriumprocessinwhichasystemisdrivenfromaninitialequilibriumdistributionpinittoafinalequilibriumdistributionpfin.Theworkdonetothesystemfordifferentrealizationsvariesduetofluctuations,thusanexactrelationbetweenworkandfreeenergychangecannotbeestablished.However,anequalityexistsfortheaveragevaluebasedonthefluctuationtheorem.Forsuchaprocess,thetotalen-tropyproductionisΔStot=(W−ΔF)/T,whereWistheworkdoneonthesystemandΔF=Ffin−Finitisthefreeenergychangeofthesystem.Therefore,thedetailedfluctuationtheorem,Equation(
13
),leadstoCrooksrelationforwork[
28
].
=eβ(W−ΔF);(15)
whereP(W)istheprobabilityofapplyinganamountofworkWduringaforwardprocess,andP(−W)istheprobabilityofapplyinganamountofwork−Wduringatime‐reversedprocess.Similarly,theintegratedfluctua-tiontheorem,Equation(
14
),leadstotheJarzynskiequality[
8
],
20954697,
6of19
■
CAOandLIANG
he−βW〉=e−βΔF.(16)
ByapplyingtheJensen’sinequality,e−βhW〉≤he−βW〉,thesecondlawofthermodynamicsisrecoveredasfollows:
ΔF≤hW〉;(17)
whichmeansthattheaverageworkdoneonthesys-tem,takenoverallrealizationsofstochastictrajec-tories,providesanupperboundforthechangeinfreeenergy.Theequalsignistakeninthequasi‐staticlimit.Thisinequalitycanbeseenasastatistical‐levelmani-festationofthesecondlawofthermodynamics.
Onthebasisofthefluctuationtheoremandincor-poratingtheconceptofinformationbyfeedbackcontrol,SagawaandUedaintroducedageneralizedversionofJarzynskiequality[
31
],
he−β(W−ΔF)−I〉γ=1;(18)
whereIisthemutualinformationintroducedbyfeed-backcontrol.
2.3|Thermodynamicuncertaintyrelation
Atthemesoscopicscale,physicalobservablesareal-wayssubjecttofluctuationduetothermalnoise.Therelationbetweenfluctuationsanddissipationisacorefocusofstochasticthermodynamics,andthecostofsuppressingfluctuationisthecentralproblemofthestudyofthethermodynamicsofbiochemicalsystems.In2015,BaratoandSeifertproposedauniversalthermo-dynamicboundonthefluctuationofstochasticcurrents[
10
].Intheirwork,theystudiedabiasedrandomwalk(arandomwalkwheretheprobabilitiesofmovingindifferentdirectionsarenotequal)inonedimensiontointroducetheuncertaintyrelationofcurrents.Insuchasystem,theforwardandbackwardtransitionratesarek+andk−,respectively,whichgeneratestochastictrajec-toriesasshowninFigure
3
.Startingfromtheorigin,themeanandvarianceofthepositionoftherandomwalkerattimeτareVar[Xτ]=2Dτ=(k++k−)τandhXτ〉=vτ=(k+−k−)τ,respectively.Thebiasednatureofrandomwalkisassociatedwithacostofentropypro-ductionaccordingtotheLDBconditionEquation(
4
),asΔS=kBln(k+/k−)perstep.ThetotalentropyproductionaftertimeτisΣτ=hXτ〉ΔS.Combiningtheseexpressionsonecanfindarelationbetweendissipationandprecisionasfollows:
=≥.(19)
Itcanalsobeformulatedintermsofvelocity,diffu-sioncoefficient,andEPRasfollows:
2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
FIGURE3Stochastictrajectoriesofabiasedrandomwalk.
≥;(20)
whereΣ.=vΔSistheEPR.
AlthoughTURwasoriginallyobtainedfromspecificmodels,itwasconjecturedtoholdformoregeneralstochasticcurrentsinstochasticprocess,andhadlaterbeenprovenusingthelargedeviationtheoryinMarkovjumpprocesses[
32
],martingaletheoryincontinuousstochasticprocess[
33
],Cramér–Raoboundformulti‐dimensionalcurrents[
34,35
]andmanyotherap-proaches[
36–38
].Thegeneralformreadsasfollows:
≥;(21)
whichsetsatrade‐offrelationbetweentheuncertaintyofcurrentsandentropyproduction.Thismeansthatachievinghigherprecisioninacurrentgenerallyre-quiresagreaterdissipation.However,itisworthnotingthatTURcanbebrokeninunderdampedsystems,asillustratedwithanexampleofanunderdampedclock
[39
].Thus,thevalidityofTURisestablishedwithintheoverdampedregime,contingentuponanumberofadditionalassumptions[
40
].TheextensionofTURbeyondtheoverdampedlimitneedstoincorporateadditionaltre
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九州职业技术学院《人体解剖生理学实验》2023-2024学年第二学期期末试卷
- 河南工业大学《视频合成与剪辑》2023-2024学年第二学期期末试卷
- 电力安全教育与培训的创新思维与实践
- 珠宝配饰与女包在时尚教育中的重要性
- 电工(高级工)模拟试题+参考答案
- 现代企业设备管理的创新实践与思考
- 目标设定与分解班组管理关键
- 宁德检测设备项目评估报告
- 电商市场中的品牌定位与差异化竞争策略
- 烟花爆竹零售申请书
- 乡镇人大代表选举结果情况报告单
- BOPP双向拉伸薄膜及胶带生产项目环境影响报告
- 《公路桥梁抗震设计规范》(2231-01-2020)
- 新技术和新项目准入制度及要点解读
- 员工待岗管理办法
- 新学期新气象PPT
- 天津高考英语词汇3500
- 上海市2023年中考数学试卷(附答案)
- 教育的第三只眼
- 多功能健身车的设计-机械设计制造及其自动化本科毕业设计
- 保密基本知识考试试题(100题含答案)
评论
0/150
提交评论