生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第1页
生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第2页
生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第3页
生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第4页
生物功能的随机热力学综述 Stochastic thermodynamics for biological functions_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Received:29February2024

Accepted:2July2024

DOI:

10.1002/qub2.75

REVIEWARTICLE

QuantitativeBiology

openAccess

Stochasticthermodynamicsforbiologicalfunctions

YuanshengCao

1

|

ShilingLiang

2

1DepartmentofPhysics,TsinghuaUniversity,Beijing,China

2InstituteofPhysics,SchoolofBasicSciences,ÉcolePolytechniqueFédéraledeLausanne

(EPFL),Lausanne,Switzerland

Correspondence

YuanshengCaoandShilingLiang.Email:

yscao@

and

shiling.liang@epfl.ch

Fundinginformation

NationalNaturalScienceFoundationofChina,Grant/AwardNumber:12374213;

SchweizerischerNationalfondszurFörderungderWissenschaftlichenForschung,Grant/

AwardNumber:200020_178763

Abstract

Livingsystemsoperatewithinphysicalconstraintsimposedbynonequilib-riumthermodynamics.Thisreviewexploresrecentadvancementsinapplyingtheseprinciplestounderstandthefundamentallimitsofbiologicalfunctions.Weintroducetheframeworkofstochasticthermodynamicsanditsrecentdevelopments,followedbyitsapplicationtovariousbiologicalsystems.Weemphasizetheinterconnectednessofkineticsandenergeticswithinthisframework,focusingonhownetworktopology,kinetics,andenergeticsinfluencefunctionsinthermodynamicallyconsistentmodels.Wediscussexamplesintheareasofmolecularmachine,errorcorrection,biologicalsensing,andcollectivebehaviors.Thisreviewaimstobridgephysicsandbiologybyfosteringaquantitativeunderstandingofbiologicalfunctions.

KEYWORDS

biologicalfunctions,physicalconstraints,stochasticthermodynamics

1|INTRODUCTION

Physicsandbiology,whilesharingacommongoalofunderstandingthenaturalworld,employdistinctpara-digmsandterminologiestoachievethisobjective.Physicsstrivestoidentifyfundamental,universallawsgoverningthebehaviorofmatterandenergy,oftenexpressedusingconceptssuchasenergy,entropy,forces,andrates.Incontrast,biologydelvesintotheintricatecomplexitiesoflife,focusingonthestructures,functions,andinformationflowwithinlivingsystems,oftenutilizingtermssuchassignals,codes,transcrip-tion,andtranslation.

Modernbiologicalphysics,orthephysicsoflivingsystems,bridgesthedisciplinarygapbyapplyingtheprinciplesandmethodologiesofphysicstoelucidatebiologicalphenomena.Acentralfocusofthisinterdis-ciplinaryfieldistheinvestigationofbiologicalfunctions.Fromthemolecularmachinerywithinacelltothebiomechanicsoforganismalmovement,biological

physicsseekstounraveltheunderlyingphysicalprin-ciplesgoverningtheseprocesses.

Thefunctionalityoflivingsystemsisconstrainedbythefundamentallawsofphysics,chemistry,andbiology.Withinsignalingnetworks,forexample,re-ceptorspecificityensuresthattheyonlyrespondtospecificligands.Thisbiochemicalspecificityarisesfromthemolecularstructuresshapedbyevolution.However,aswillbedetailedlater,thefundamentallimitationsgoverningmanybiologicalfunctionsstemnotonlyfrombiologicalandchemicalfactorsbutalsofromthebasicphysicalprinciplesgoverningcellularprocessesandtheirenvironment.

Amongtherelevantsubfieldsofphysics,thermo-dynamicsprovidessomeofthemostuniversalcon-straintsonbiologicalsystems.Forinstance,theconservationofenergy(thefirstlawofthermody-namics)andmateriallimitstheyieldofcellularmeta-bolism[

1,2

].Thesecondlawofthermodynamics,whichstatesthatisolatedsystemstendtoward

Thisisanopenaccessarticleunderthetermsofthe

CreativeCommonsAttribution

License,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.

©2024TheAuthor(s).QuantitativeBiologypublishedbyJohnWiley&SonsAustralia,LtdonbehalfofHigherEducationPress.

QuantitativeBiology.2025;e75.

/10.1002/qub2.75

-

/journal/qb

1of19

20954697,

2of19

CAOandLIANG

maximumdisorder(andthereforeincompatiblewithlife),haslongchallengedphysicistsseekingtounder-standhowlivingsystemsmaintaintheirorderedstate.ErwinSchrödinger,inhisinfluentialbookWhatisLife?,assertedthatlivingcellsmustabsorb“negativeen-tropy”or“freeenergy”asitistermedinstandardther-modynamics,tocounterbalancetheentropyproducedwithinbiologicalprocessesandmaintaintheirlow-entropy(highlyordered)states.Thermodynamically,akeydistinctionbetweenacellandaboxofgasisthatacellrepresentsanopensystem,continuouslyexchangingenergywithitssurroundingstoremaininastateofdynamicorder.

Traditionalequilibriumthermodynamicsoffersawell-suitedframeworkfordescribingaboxofgasmol-ecules.However,duetotheircontinuousexchangeoffreeenergywiththeenvironment,cellsareinherentlynonequilibriumsystems.Notably,acentralthemeofthisreviewisthatthecostoffreeenergyimposesfundamentallimitsontheperformanceofbiologicalfunctions.Furthermore,cellularsystemsoftenoperateatthemicroscopicormesoscopicscale,wherethenumberofparticipatingmolecules,typicallyrangingfrom10to105,fallswellbelowthethermodynamiclimitof1023particles.Thischaracteristicclassifiesatypicalcellasamicroscopicormesoscopicnonequilibriumsystem.Consequently,theperformanceofbiologicalfunctionsisalsoinherentlylimitedbytheinevitablefluctuationsarisingfromthesmallnumberofmoleculesinvolved.

Recentadvancesinstochasticthermodynamicsprovideapowerfultooltoaddressthetwofeatureslistedabove.Stochasticthermodynamicsinvestigatesthebehaviorofmesoscopicsystemsgovernedbythermalfluctuations,bothinandoutofequilibrium,establishingafundamentalrelationshipbetweenther-modynamicprinciplesandstochastickinetics.ThisfieldtracesitsrootstoEinstein’sseminalworkonBrownianmotion,inwhichheestablishedthefluctuation–dissipationtheorem(FDT),revealingaprofoundconnectionbetweenfluctuationanddissipationatthermodynamicequilibrium.Forsystemsoutofequi-librium(suchasaBrownianparticlecoupledtomultiplethermalreservoirsorsubjectedtotime-dependentenvironmentalchanges),abroaderthermodynamicframeworkisnecessary,particularlyforunderstandinginherentlynonequilibriumbiologicalprocessesatthesubcellularlevel.Fromthelatterhalfofthe20thcen-tury,significanteffortsweremadetoconnecttheirre-versibledynamicsofstochasticprocesseswithentropyproduction[

3–5

],leadingtoacomprehensiveframe-workwithprecisedefinitionsofthermodynamicquanti-tieslikeworkandheatatthemesoscopiclevel[

6

].Buildinguponthisframework,researchershaveappliedadvancedmathematicalandphysicaltoolstoinvesti-gatefundamentalthermodynamicconstraints,resultinginkeyfindingssuchasthefluctuationtheoremwhich

2025,1,Downloadedfrom

/doi/10.1002/qub2.75byCochraneChina

,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(

/terms-and-conditions

)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense

quantifiestheirreversibilityofmesoscopicsystems[

7–

9

],thethermodynamicuncertaintyrelation(TUR)whichidentifiesthethermodynamiccostofsuppressingcur-rentfluctuations[

10

],andnonequilibriumresponseboundsdemonstratinguniversalconstraintsonthesensitivityofnonequilibriumresponse[

11

].Thesead-vancesinstochasticthermodynamicsilluminatethethermodynamicprinciplesgoverningmesoscopicsto-chasticsystemsandsetphysicalconstraintsonmesoscopicbiologicalprocesses.

Thisreviewdelvesintorecentadvancementsinunderstandingthephysicallimitations,particularlyfromanonequilibriumthermodynamicsperspective,ontheperformanceofvariousbiologicalfunctions.Webeginbyintroducingthefundamentalframeworkandrecentdevelopmentsinstochasticthermodynamics.Subse-quently,weshowcaseadvancementsinapplyingtheseprinciplestodiversebiologicalsystems.Recognizingthedeepconnectionbetweenkineticsandenergeticsinstochasticthermodynamics(e.g.,localdetailedbalance[LDB]),thereviewspecificallyfocusesonstudiesthatelucidatehowkinetics,energetics,andnetworktopol-ogydeterminebiologicalfunctionwithinthermody-namicallyconsistentmodels.Threekeyquestionswillbeaddressedanddiscussed:(1)howtodefineaspe-cificbiologicalfunctionwithinthecontextofbiologicalnetworksandthermodynamics,(2)howstochasticthermodynamics,particularlyfreeenergydissipation(orentropyproduction),imposesconstraintsonbiologicalfunctionality,and(3)howtoapproachtheselimitationsandoptimizeperformance.Thesekeyaspectswillbeexaminedwithspecificexamplesinvariousareas,includingtheprecisionofmolecularmachines,errorcorrectionmechanisms,biologicalsensing,andtheemergenceofcollectivebehaviors.Thisreviewaimstobridgethegapbetweenphysicsandbiology,fosteringaquantitativeunderstandingofbiologicalfunctions.

2|INTRODUCTIONTOSTOCHASTICTHERMODYNAMICS

2.1|Thermodynamicsofstochasticprocesses

Manybiologicalprocesses,suchasmolecularmotormotion,transcription,andproteinfolding,canbemodeledasMarkoviandynamicswherethermalnoisetriggerstransitionsbetweenmesoscopicstates[

12–

15

].Stochasticthermodynamicsoffersacomprehen-siveframeworkfordescribingthethermodynamicsofstochasticprocessesbyestablishingconstraintsonki-netics.Consequently,itenablesprecisedefinitionsofthermodynamicquantities,suchasentropyproduction,atbothtrajectoryandensemblelevels[

16–18

].Thisframeworkfurtherallowsforthederivationofthermo-dynamicconstraintsonvariousphysicalobservables,

20954697,2025,1,Downloadedfrom

/doi/10.1002/qub2.75byCochraneChina

,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(

/terms-and-conditions

)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense

3of19

STOCHASTICTHERMODYNAMICSFORBIOLOGICALFUNCTIONS

illustratinghowphysicallawslimitbiologicalfunctions.Here,wewillintroducethebasicframeworkofsto-chasticthermodynamicsandhighlightseveralrecentadvancesinthisfield.

2.1.1|Masterequation

Adiscrete‐statestochasticprocessisgovernedbyamasterequationthatdescribesthetimeevolutionoftheoccupationprobabilitiesofstates:

p(t)=Wp(t);(1)

wherep(t)=[p1(t),p2(t),…,pn(t)]representsthevectorofprobabilitydistributionacrossallstatesinthesystemattimet.Here,Wisthetransitionratematrix,withitselementWijindicatingthetransitionratefromstatejtostatei.Thetimeevolutionoftheprobabilityforstateicanbederivedfromtheequationasfollows:

dX

dtpi=j≠i(Wijpj−Wjipi);(2)

whereJij=Wijpjrepresentstheprobabilitycurrentfromstatejtostatei,contributedbyalltransitioneventsalongtheedgeeijfromjtoi.ThenetcurrentfromstatejtostateiisJij=Jij−Jji.Inthelongtimelimit,thesystemreachesastationarystate,denotedbypst,inwhichall

netcurrentsarebalanced,suchthatΣj≠iJt=0forany

iorinmatrixproductformWpst=0.Ifallnetcurrents

arezero,thatis,Jt=0forallpairsi,j,thesteadystate

isanequilibriumstate.

Thesteady‐stateprobabilitydistributioncanbederivedusingagraph‐theoreticapproach,expressedasfollows:

(3)

p=;

whereTiisadirectedspanningtreerootedatstatei,andw(Ti)istheweightofthedirectedtreeTi,calcu-latedastheproductofthetransitionratesalongtheedgesofthetree.Figure

1

illustratesthespanningtreerepresentationofthesteady‐stateprobabilitydistribu-tionfora3‐statesystem.

Thisgraph‐theoreticsolutionhasbeendiscoveredseveraltimesthroughouthistory[

19–21

].Itcircumventsthedirectcomputationofmatrixinversionsandfacili-tatestheoreticalanalysisbasedonthegraph‐theoreticpropertiesofthenetwork.Thisanalysisservesasafoundationalelementforexploringthethermodynamicsofstochasticprocesses.Suchexplorationshaveledtonumerousresults,includingcycle‐decompositionofentropyproduction[

20

],boundsonnonequilibrium

responses[

11,22

],constraintsonsymmetrybreakinginbiochemicalsystem[

23

],andthedevelopmentofthespanning‐treerepresentationforfirstpassagetimesstatisticsinMarkovchains[

21,24

].

2.1.2|Localdetailedbalance

Forsmallsystems,theprincipleofmicroscopicreversibilitymandatesthatforanytransition,anasso-ciatedbackwardtransitionmustexist.Inasystemgovernedbythemasterequation,thermodynamicsisintroducedoneverypairoftransitionratesthroughtheLDBcondition

[18,25

],

=eΔSnv/kB;(4)

wherekBistheBoltzmannconstantandΔSnvrepre-

sentstheentropyproductionintotheenvironmentforthetransitionj→i.Theentropyproductionintotheenvironmentisdeterminedbytheenergyexchangebetweenthesystemanditsenvironment,incorporatingtwocontributions:theenergydifferencebetweenthetwostates,∈j−∈i,andthedrivingforceFij,

ΔSnv=(∈j−∈i)/T+Fij;(5)

whereTisthetemperatureoftheenvironment.Theentropyproductionquantifiestheirreversibilityofatransition—iftheentropyproductionispositive(i.e.thetransitionfromstatejtostateiincreasestheentropyoftheenvironment),thenWij>Wji,indicatingapreferencefortheforwardtransitionoverthebackwardone.Thelocalthermodynamicdefinitionoftransitionratesallowsustoassesswhetherasystemisinoroutofequilibriumonagloballevel.Onecancalculatethenonequilibriumdrivingforcealongacyclec=[m0,m1,m2,…,mn,m0]inthenetwork,

,、

Fc=ln;(6)

referredtoascycleaffinity,orcyclicdrivingforce.WhenFc≠0,thetime‐reversalsymmetryisbroken,indicatingthesystemisoutofequilibrium—astraversingacycleresultsinnonzeroentropyproduction.Conversely,ifFc=0forallcyclesinthenetwork,knownasKolmo-gorov’scriterion[

26

],thesystemisanequilibriumsystemandpreservestime‐reversalsymmetry.Theequilibriumnatureofasystemallowstheconstructionofanenergylandscapeinwhichtheentropyproductionofatransitionissolelydeterminedbytheenergydif-ferencebetweentheinitialandfinalstates,thatis,

ΔSnv=(∈j−∈i)/T.Consequently,theLDBcondition

reducestothedetailedbalancecondition

20954697,2025,1,Downloadedfrom

/doi/10.1002/qub2.75byCochraneChina

,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(

/terms-and-conditions

)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense

4of19

CAOandLIANG

FIGURE1Graph‐theoreticsolutionforMarkovchain.(A)Athree‐stateMarkovchain.(B)Thegraph‐theoreticsolutionofstationarystate

probability.

==e−β(∈i−∈j);(7)

foranypairofstates,whereβ=1/(kBT)istheinversetemperature.DetailedbalanceensuresthesystemcanrelaxtoanequilibriumBoltzmanndistribution,

pieq=;(8)

wherethesummationinthedenominatorisoverallstates.Withdetailedbalance,thegraph‐theoreticalsolution,Equation(

3

),canbereducedtotheBoltz-manndistribution.

2.1.3|Entropyproductionrate

TheLDBconditionlinksthekineticsofaMarkovpro-cesswithitsthermodynamicproperties.Beyondtheentropyproductionofindividualtransitions,itispossibletodefinetheentropyproductionrate(EPR)attheensemblelevel,whichquantifiestheaveragerateofentropyproductionacrosstheentiresystem.DenotingtheEPRasΣ.,itcanbeexpressedasfollows:

Σ.tot=kB←JijlnJij

i;j>iJji

=kB←JijlnWij+kB←Jijlnpj.(9)

i;j>iWjiij>ipi

、 、尺----------√、-----;----、尺---------√

environmentEPR;Σ.envsystemEPR;Σ.sys

ThetotalEPR,Σ.tot,canbedecomposedintotheenvironmentEPR,Σ.env,andthesystemEPR,Σ.sys.Notably,thesystemEPRequalsthetimederivativeofthesystem’sShannonentropy,Σ.sys=−kBΣipilnpi).

Atanonequilibriumstationarystate,theprobabilitydistributionremainsunchangedovertime,resultinginzerosystemEPR.ThesignofJij=Jij−Jjialwaysalignswiththatofln(Jij/Jji),ensuringthenon‐negativetotalEPR.Thispropertyisconsistentwiththesecondlawofthermodynamics,whichstatesthatthetotalentropyofanisolatedsystem(herethesystemandenvironmenttogetherconstituteanisolatedsystem)isanon‐decreasingfunction.

2.2|Stochastictrajectoriesand

fluctuationtheorems

Themasterequationprovidesadeterministicdescrip-tionofthetimeevolutionofprobabilitydistributionsinaMarkovchain,obtainedbyaveragingoverthemanypossiblestochastictrajectorieswhicharegeneratedbythetransitionratematrixW.Ontheotherhand,theMarkovchainitselfmodelstherandomtransitionsbe-tweenstates,capturingtheinherentfluctuationsatthelevelofindividualtrajectories.AsdepictedinFigure

2B

,astochastictrajectory(andthetime‐reversedtrajectoryinFigure

2C

)withinathree‐statenetworkprovidesavisualrepresentationoftheseconcepts.Understandingthethermodynamicpropertiesofstochastictrajectoriesandextractinginformationfromthemarecentralproblemsinstochasticthermodynamics.Toaddressthesechallenges,wefirstintroducetheprobabilityofastochastictrajectoryforageneraldiscrete‐statesto-chasticprocess.Inthemostgeneralcase,asystemcanbesubjectedtoexternalcontrol,λt,leadingtoatime‐dependenttransitionmatrix,Wλ(t).Astochastictrajectoryisasequenceofstates[γ0,γ1,…,γn]alongwiththecorrespondingtimesoftransitionevents[t0,t1,t2,…,tn,tn+1],wheret0=0andtn+1=τdenotetheinitialandfinaltimesofthetrajectory,respectively,andeachtirepresentsthetimeforthetransitionγi−1→γi.Theprobabilityofatrajectorycanbewrittenasfollows:

20954697,2025,1,Downloadedfrom

/doi/10.1002/qub2.75byCochraneChina

,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(

/terms-and-conditions

)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense

5of19

STOCHASTICTHERMODYNAMICSFORBIOLOGICALFUNCTIONS

FIGURE2StochastictrajectoriesforaMarkovchain.(A)Athree‐stateMarkovchain.(B)Astochastictrajectoryonthethree‐state

network.Theprobabilityofatrajectorycontainsthecontributionfromtransitioneventsandthesurvivalprobabilityamongthestatesalongthetrajectory.(C)Thetime‐reversedtrajectory.

Wiγi(t)dt

n

Pγ=p(γ0;0)∏i=1

(10)

;

i=0

Wiγi−1(ti)e∫+1

wherep(γ0,0)istheprobabilityatstateγ0withthe

initialdistribution,Wiγi−1(ti)istheprobabilityoftransition

Wγiγi(λ(t))dt

isthesurvival

γi−1→γiattimeti,ande∫+1

probabilityonstateγibetweentheinandouttransitions.Denotingtheprobabilityofthereversedtra-jectoryγundertime‐reversedprotocolλ(t)=λ(tn+1−t)asPγ,onecanfindthattheratioofthesetwoprobabilitiesisdeterminedbythetotalentropyproductionalongthetrajectory[

27

].

Pγ;

Pγ=eΔSot/kB(11)

where,

ΔSot=kBln+kBln.(12)

Equation(

11

)quantifiestheirreversibilityontrajec-torylevel,andcanalsobeunderstoodasadirectconsequenceofLDBcondition[

25

].Byintegratingoveralltrajectorieswithequalentropyproduction,wecanfindthedetailedfluctuationtheorem[

28

].

,、

PΔStotΔStot

P−ΔStot

,、=ekB;(13)

whichstatesthattheprobabilityofobservationofen-tropyproductionofanamountΔStotiseΔStot/kbmorelikelythanobservingthesameamountofnegativeentropyproductionunderatime‐reversalcontrolpro-tocol.Thisisoneofthemostfundamentalrelationsin

stochasticthermodynamics.Byaveraginge−ΔSot/kB

overallpossibletrajectories,onecanobtaintheinte-gratedfluctuationtheorem,

e−kB=Pγe−kBdγ=Pγdγ=1.(14)

,ΔSot、ZΔSotZ

γγγ

Thefluctuationtheoremhasbeenfoundseveraltimesattheendofthelastcentury

[7,8,28

].ItsapplicabilityextendsbeyondMarkovianprocesses,encompassingdeterministicHamiltoniansystems[

29

]andquantumsystems[

30

].Forexample,Jarzynskiequalityasoneoftheveryfirstintegratedfluctuationtheorems[

8

]revealsarelationbetweenworkandfreeenergychangeinanonequilibriumprocessinwhichasystemisdrivenfromaninitialequilibriumdistributionpinittoafinalequilibriumdistributionpfin.Theworkdonetothesystemfordifferentrealizationsvariesduetofluctuations,thusanexactrelationbetweenworkandfreeenergychangecannotbeestablished.However,anequalityexistsfortheaveragevaluebasedonthefluctuationtheorem.Forsuchaprocess,thetotalen-tropyproductionisΔStot=(W−ΔF)/T,whereWistheworkdoneonthesystemandΔF=Ffin−Finitisthefreeenergychangeofthesystem.Therefore,thedetailedfluctuationtheorem,Equation(

13

),leadstoCrooksrelationforwork[

28

].

=eβ(W−ΔF);(15)

whereP(W)istheprobabilityofapplyinganamountofworkWduringaforwardprocess,andP(−W)istheprobabilityofapplyinganamountofwork−Wduringatime‐reversedprocess.Similarly,theintegratedfluctua-tiontheorem,Equation(

14

),leadstotheJarzynskiequality[

8

],

20954697,

6of19

CAOandLIANG

he−βW〉=e−βΔF.(16)

ByapplyingtheJensen’sinequality,e−βhW〉≤he−βW〉,thesecondlawofthermodynamicsisrecoveredasfollows:

ΔF≤hW〉;(17)

whichmeansthattheaverageworkdoneonthesys-tem,takenoverallrealizationsofstochastictrajec-tories,providesanupperboundforthechangeinfreeenergy.Theequalsignistakeninthequasi‐staticlimit.Thisinequalitycanbeseenasastatistical‐levelmani-festationofthesecondlawofthermodynamics.

Onthebasisofthefluctuationtheoremandincor-poratingtheconceptofinformationbyfeedbackcontrol,SagawaandUedaintroducedageneralizedversionofJarzynskiequality[

31

],

he−β(W−ΔF)−I〉γ=1;(18)

whereIisthemutualinformationintroducedbyfeed-backcontrol.

2.3|Thermodynamicuncertaintyrelation

Atthemesoscopicscale,physicalobservablesareal-wayssubjecttofluctuationduetothermalnoise.Therelationbetweenfluctuationsanddissipationisacorefocusofstochasticthermodynamics,andthecostofsuppressingfluctuationisthecentralproblemofthestudyofthethermodynamicsofbiochemicalsystems.In2015,BaratoandSeifertproposedauniversalthermo-dynamicboundonthefluctuationofstochasticcurrents[

10

].Intheirwork,theystudiedabiasedrandomwalk(arandomwalkwheretheprobabilitiesofmovingindifferentdirectionsarenotequal)inonedimensiontointroducetheuncertaintyrelationofcurrents.Insuchasystem,theforwardandbackwardtransitionratesarek+andk−,respectively,whichgeneratestochastictrajec-toriesasshowninFigure

3

.Startingfromtheorigin,themeanandvarianceofthepositionoftherandomwalkerattimeτareVar[Xτ]=2Dτ=(k++k−)τandhXτ〉=vτ=(k+−k−)τ,respectively.Thebiasednatureofrandomwalkisassociatedwithacostofentropypro-ductionaccordingtotheLDBconditionEquation(

4

),asΔS=kBln(k+/k−)perstep.ThetotalentropyproductionaftertimeτisΣτ=hXτ〉ΔS.Combiningtheseexpressionsonecanfindarelationbetweendissipationandprecisionasfollows:

=≥.(19)

Itcanalsobeformulatedintermsofvelocity,diffu-sioncoefficient,andEPRasfollows:

2025,1,Downloadedfrom

/doi/10.1002/qub2.75byCochraneChina

,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(

/terms-and-conditions

)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense

FIGURE3Stochastictrajectoriesofabiasedrandomwalk.

≥;(20)

whereΣ.=vΔSistheEPR.

AlthoughTURwasoriginallyobtainedfromspecificmodels,itwasconjecturedtoholdformoregeneralstochasticcurrentsinstochasticprocess,andhadlaterbeenprovenusingthelargedeviationtheoryinMarkovjumpprocesses[

32

],martingaletheoryincontinuousstochasticprocess[

33

],Cramér–Raoboundformulti‐dimensionalcurrents[

34,35

]andmanyotherap-proaches[

36–38

].Thegeneralformreadsasfollows:

≥;(21)

whichsetsatrade‐offrelationbetweentheuncertaintyofcurrentsandentropyproduction.Thismeansthatachievinghigherprecisioninacurrentgenerallyre-quiresagreaterdissipation.However,itisworthnotingthatTURcanbebrokeninunderdampedsystems,asillustratedwithanexampleofanunderdampedclock

[39

].Thus,thevalidityofTURisestablishedwithintheoverdampedregime,contingentuponanumberofadditionalassumptions[

40

].TheextensionofTURbeyondtheoverdampedlimitneedstoincorporateadditionaltre

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论